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ABSTRACT This is a geometric approach to spatial involute gearing which has recently been developed by Jack Phillips 
(2003). After recalling Phillips' fundamental theorems and other properties, some geometric questions around this interesting 
type of gearing are discussed. 
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1  PRELIMINARIES   

In the series of International Conferences on Geometry and 
Graphics there had been several papers dealing with spatial 
gearing, e.g. Podkorutov et al. (1998 and 2002), Andrei et al. 
(2002) or Brailov (1998). 

The function of a gear set is to transmit a rotary motion of the 
input wheel 1Σ  about the axis 10p  with angular velocity 

10ω  to the output wheel 2Σ  rotating about 20p  with 20ω in 
a uniform way, i.e., with a constant  transmission ratio 

 20 10: const ./i ω ω= =  (1) 

According to the relative position of the gear axes 10p  and 
20p we distinguish the following types: 

a)   Planar gearing (spur gears) for parallel axes 10 20, ,p p   
b) spherical gearing (bevel gears) for intersecting axes 

10 ,p 20p , and 
c) spatial gearing (hyperboloidal gears) for skew axes 

10 ,p 20 ,p in particular worm gears for orthogonal 
10 ,p 20p . 

1.1  Planar gearing 

In the case of parallel axes 10 ,p 20p  we confine us to a 
perpendicular plane where two systems 1Σ , 2Σ  are rotating 
against 0Σ  about centers 10, 20 with velocities 10 ,ω 20 ,ω  
respectively. Two curves 1 1c ⊂ Σ  and 2 2c ⊂ Σ  are 
conjugate profiles when they are in permanent contact 
during the transmission, i.e., 2 1( , )c c is a pair of enveloping 
curves under the relative motion 2 1/ .Σ Σ  Due to a standard 
theorem from plane kinematics (see, e.g., Wunderlich (1970) 
or Husty et al. (1997)) the common normal at the point E of 
contact must pass through the pole 12 of this relative motion. 
Due to the planar Three-Pole-Theorem this point 12 divides 
the segment 01 02 at the constant ratio i and is therefore fixed 
in the frame link 0 .Σ  We summarize: 

Theorem 1 (Fundamental law of planar gearing):  
The profiles 1 1c ⊂ Σ  and 2 2c ⊂ Σ  are conjugate if and only 
if the common normal e (= meshing normal) at the point E of 
contact (= meshing point) passes through the relative pole 
12. 

Due to L. Euler (1765) planar involute gearing (cf. e.g. 
Wunderlich (1970)) is characterized by the condition that 
with respect to 0Σ  all meshing normals e are coincident. 
This implies  
 (i) The profiles are involutes of the base circles.   
 (ii) For constant driving velocity 10ω  the point of contact E 

runs relative to 0Σ  with constant velocity along e. 
(iii) The transmitting force has a fixed line of action. 
(iv) The transmission ratio i depends only on the dimension 

of the curves 2 1,c c  and not on their relative position. 
Therefore this planar gearing remains independent of 
errors upon assembly. 

1.2  Basics of spatial kinematics 

There is a tight connection between spatial kinematics and 
the geometry of lines in the Euclidean 3-space 3IE .  
Therefore we start with recalling the use of appropriate line 
coordinates: 

Any oriented line (spear) IRg = +a g can be uniquely 
represented by the pair of vectors ˆ( ),g, g the direction vector 
g and the momentum vector ˆ ,g  with  

 1⋅ =g g   and  ˆ : .= ×g a g  
It is convenient to combine this pair to a dual vector  

 ˆ: ε= +g g g,  

where the dual unit ε obeys the rule 2 0.ε =  We extend the 
usual dot product of vectors to dual vectors and notice 

 ˆ ˆ. 2 . 1 0 1.ε⋅ = + = + =g g g g g g  

Hence we call g  a dual unit vector. 
The dot product of dual vectors is defined by  

 ˆˆ. ( . . ).ε⋅ = + +g h g h g h g h  

In the case of dual unit vectors this product has the following 
geometric meaning: 

 ˆcos cos sinϕ ϕ εϕ ϕ⋅ = = −g h  (2) 

where ˆϕ ϕ ε ϕ= +  is the dual angle (see Fig. 1) between the 
corresponding lines g und h, i.e., with ) ghϕ = <  and ϕ̂  as 
shortest distance (cf. Pottmann, Wallner (2001), p. 155 ff). 
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Figure 1:  Two spears g, h enclosing the dual angle 
ˆϕ ϕ εϕ= + . 

The components ϕ  and ϕ̂  of ϕ  are signed according to any 
chosen orientation of the common perpendicular n. When the 
orientation of  n is reversed then ϕ  and ϕ̂  change their sign. 
When the orientation either of g or of h is reversed then ϕ  
has to be replaced by (mod 2 ).ϕ π π+  

There is also a geometric interpretation for non-normalized 
dual vectors: At any moment a spatial motion /i jΣ Σ  
assigns to the point iX ∈ Σ  (coordinate vector x) the velocity 
vector  
 ˆ ( )X ij ij ij= + ×q q xv  (3) 

relative to .jΣ  We combine the pair ˆ, )ij ij(q q  again to a 
dual vector .ijq  This vector can always be expressed as a 
multiple of a unit vector, i.e., 

 
ˆ:

ˆ ˆ( ) (
ij ij ij

ij ij ij ij ij ij

ε
ω ε ω ε ω

= + =
= + + =

q q q
p p ) p  

with 1.ij ij⋅ =p p It turns out that X ijv  coincides with the 
velocity vector of X under a helical motion (=  instantaneous 
screw motion) about the instantaneous axis (ISA) with dual 
unit vector .ijp  The dual factor ijω is a compound of the 
angular velocity ijω  and the translatory velocity ˆijω  of this 
helical motion. ijq is called the instantaneous screw. In this 
sense, spears are the screws of rotations with angular 
velocity 1. 

For each instantaneous motion (screw ijq ) the path normals 
n constitute a linear line complex, the (= complex of normals) 
as the dual unit vector ˆε= +n n n  of any normal n obeys the 
equation  

 ˆ ˆ. . 0ij ij+ =q n q n   ( IR).ij⇔ ⋅ ∈q n  (5) 

This results from . 0X ij =nv  and ˆ .= ×n x n  By (2) it is 
equivalent to  

 ˆ( ) cos IRij ijω εω α+ ∈ i.e. 
ˆ

ˆ tan .ij

ij

ω
α αω =  (6) 

with α denoting the dual angle between ijp  and any 
orientation of  n. 

The spatial Three-Pole-Theorem states (cf. Husty et al. (1997) 
or Stachel (2000)):  If for three given systems 0 ,Σ 1,Σ 2Σ  the 
dual vectors 10 ,q 20q  are the instantaneous screws of 

 1 0 ,/Σ Σ  2 0 ,/Σ Σ  resp., then  

 21 20 10= −q q q  (7) 

is the instantaneous screw of the relative motion 2 1./Σ Σ   

As a consequence, if a line n which intersects the ISAs 10p  
of 1 0/Σ Σ  and 20p  of  2 0/Σ Σ  orthogonally, then it does the 
same with the axis 21p  of 2 1,/Σ Σ  provided 21 0.ω ≠  

For given skew axes 10 ,p 20 ,p  but arbitrary dual velocities 
10 ,ω 20ω  the axes 21p  of the relative motions 2 1/Σ Σ  

constitute a cylindroid or Plücker conoid (see, e.g., Pottmann, 
Wallner (2001), p. 181). Fig. 2 gives an impression of the 
cylindroid by showing some generators 'between' 10p  and 

20.p  

 

 

 

 

 

 

 

 

 

 

Figure 2:  Generators of the cylindroid spanned  by the 
screws 10p  and 20.p  

For each ratio 20 10 0,/ω ω ≠ ∞  the polodes 1,Π 2Π  of the 
relative motion 2 1/Σ Σ  are one-sheet hyperboloids of 
revolution which are in contact along 21p  and have axes 

10 ,p 20 ,p respectively. The common normal lines of 1Π  and 
2Π  at the points of 21p  intersect both, 10p  and 20 ,p  and 

constitute an orthogonal hyperbolic paraboloid. 
We summarize: 

Lemma 1  The generators 21p  of the cylindroid are 
characterized as those straight lines in space where a line 
contact can take place between one-sheet hyperboloids of 
revolution 1,Π 2Π  with mutually skew  axes 10 ,p 20.p  

These hyperboloids are the spatial equivalents for root and  
addendum circles from planar gearing. They were used at the 
gearing displayed in Fig. 6.   

1.3  Basics of spatial gearing 

Let the systems 1,Σ 2Σ  rotate against 0Σ  about the fixed 
axes 10 ,p 20p  with constant angular velocities 10 ,ω 20 ,ω  
respectively. 

Then the instantaneous screw of the relative motion 2 1/Σ Σ  
is constant in 0 ,Σ  too.  

n h

g
a

ϕ̂

ϕ



It reads  

 21 20 20 10 10ω ω= −q p p   for  10 20, IR.ω ω ∈  (8) 

When two surfaces 1 1Φ ⊂ Σ  and 2 2Φ ⊂ Σ  are conjugate 
tooth flanks for a uniform transmission, then 1Φ  contacts 

2Φ  permanently under the relative motion 2 1./Σ Σ   
In analogy to the planar case we obtain 
Theorem 2 (Fundamental law of spatial gearing)   
The tooth flanks 1 1Φ ∈ Σ  and 2 2Φ ∈ Σ  are  conjugate if and  
only if at each point E of contact the contact normal e is  
included in the complex of normals of the relative motion 

2 1./Σ Σ  

Due to (5) the dual unit vector e  of any meshing normal e 
obeys the equation of the linear line complex  

 21 20 20 10 10( ) ( ) IR.ω ω⋅ = ⋅ − ⋅ ∈q e p e p e  

Hence (2) implies for the dual angles 1,α 2α  between e and 
10p  and 20 ,p  resp., (see Fig. 3, compare Phillips (2003), p. 

46, Fig. 2.02) 

  20 2 2 10 1 1ˆ ˆsin sin 0ω α α ω α α− =   
and therefore 

 20 1 1

10 2 2

ˆ sin .
ˆ sin

i
ω α α
ω α α= =  (9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Spatial involute gearing: The point E of contact 
traces a fixed contact normal e. 

2  SPATIAL INVOLUTE GEARING 

Spatial involute gearing is characterized in analogy to the 
planar case as follows (cf. Phillips (2003)): All contact 
normals e are coincident in 0Σ  – and skew to 10p  and 

20.p 1 We exclude also perpendicularity between e and one 
of the axes. 
According to (9) a constant contact normal e implies already 
a constant transmission ratio i. 

                                                        
1 Note that in general this gearing offers single point contact only. 

2.1  Slip tracks 

First we focus on the paths of the meshing point E relative to 
the wheels 1,Σ 2.Σ  These paths are called slip tracks 1,c 2:c  

1 0/Σ Σ  is a rotation about 10 ,p  and with respect to 0Σ  point 
E is placed on the fixed line e. Therefore – conversely – the 
slip track 1c   is located on the one-sheet hyperboloid 1Ψ  of 
revolution through e with axis 10.p 2 
On the other hand, the slip track 1c  is located on the tooth 
flank 1,Φ and for each posture of 1Φ  line 0e ⊂ Σ  is 
orthogonal to the tangent plane ε  at the instantaneous point 
of contact (see Fig. 3). 
Therefore the line tangent to the slip track 1c  is orthogonal to 
e. This gives the result: 
Lemma 2   The path 1c  of E relative to 1Σ  is an orthogonal   
trajectory of the e-regulus on the one-sheet hyperboloid   1Ψ  
through e with axis 10.p  

We use a cartesian coordinate system3 with the z-axis at 10p  
and the x-axis along the common perpendicular 1n  between 

10p  and e (see Fig. 3). Then the plane 0z =  contains the 
throat circle of the hyperboloid 1.Ψ   

 1( , ) ( ) ( )u A u eΨ = ⋅v v  with 

 
1

1
1

ˆcos sin 0
( ) sin cos 0 , ( ) sin

cos0 0 1

u u
A u u u e

α
α
α

−� � � �
� � � �= = −

� �� �
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v v
v

 

is a parametrization of 1Ψ  in matrix form and based on the 
parametrization ( )e v  of the line e.  
The curve 1 1( ) [ ( ), ( )]c t u t t= Ψ v  intersects the v -lines 
orthogonally if  

 
T

( ) ( ) ( ) 0.
d A d e de

e u A u A u
du d d

� �⋅ + ⋅ ⋅ ⋅ =	 

� �

v v
v v
��  

This is equivalent to the differential equation 

 1 1ˆ sin 0.uα α− + =v��  
Hence the slip track 1c  which starts in the plane 0z =  on the 
x-axis can be parametrized as 

 1 1ˆ( ) ( ) ( sin )ic u A u e uα α= ⋅  (10) 
or 

 2
1 1 1 1

1

cos sin
ˆ ˆ( ) sin sin cos .

0 cot

u u
c u u u uα α α

α

� � � �
� � � �= + −
� � � �
� � � �

 (11) 

We obtain all other slip tracks on 1Ψ  by rotation about 10.p  
In order to describe the ‘absolute motion’ of the point E of 
contact, i.e., its motion with respect to 0 ,Σ  we superimpose 
the rotation of the hyperboloid 1Ψ  about 10p  with angular 
velocity 10ω  with the movement of E along 1c  by setting 

10 .u tω= −  Thus we obtain the path 10 1 1ˆ( sin ).e tω α α−  

                                                        
2  As line e is different from the relative axis 21 ,p  this one-sheet 
hyperboloid of revolution 1Ψ  differs from the polodes 1Π  mentioned in 
Lemma 1. 
3 A more geometric approach for this fact can be found in Stachel (2004). 
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Figure 4: Slip tracks 1c  as orthogonal trajectories on the 
one-sheet hyperboloid 1Ψ  ( 1 1ˆ sin 0).α α <  

This proves that E traces line e with the constant velocity 
vector  

 0 10 1 1 1
1

0
ˆ sin sin .

cos
E ω α α α

α

� �
� �= − −
� �
� �

v  (12) 

 
2.2  The tooth flanks 

The simplest tooth flank for single point contact is the 
envelope 1Φ  of the plane ε  of contact in 1.Σ  By (12) this 
plane ε  through E and perpendicular to e is translated along 
e and simultaneously rotated about 10.p  Therefore 1Φ  it is a 
helical involute (see Fig. 5), the developable swept by 
tangent lines of a helix. 

The parametrization in (11) can be rewritten as  

 2
1 1 1 1

1 1

cos sin
ˆ ˆ( ) sin sin cos

tan tan

t t
c u t t t

t
α α α

α α

−� � � �
� � � �= −
� � � �
� � � �

 (13) 

thus showing 1c  as a curve on 1.Φ  

The first term on the right hand side parametrizes the edge of 
regression of 1.Φ  The second term has the direction of 
tangent lines, the generators 1 1.g ⊂ Φ  
   
Lemma 3  The slip track 1c  is located on a helical involute 

1Φ  with the pitch 1 1ˆ tan .α α  At each point 1E c∈  there is an 
orthogonal intersection  between 1Φ  and the one-sheet 
hyperboloid 1Ψ  of Lemma 2. 

Different slip tracks on 1Φ  arise from each other by helical 
motions about 10p  with pitch 1 1ˆ tan .α α  

 

 

  

 

 

 

 

 

 

 

 

 

 
 

Figure 5: The tooth flank 1Ψ  (helical involute) with the slip 
track 1c  of point 1E g∈  ( 1 1ˆ sin 0).α α >  

We summarize:  

Theorem 3 (Phillips' 1st Fundamental Theorem) 
The helical involutes 1,Ψ 2Ψ   are conjugate tooth flanks  
with point contact for a spatial gearing where all meshing 
normals  coincide with a line e  fixed in 0 .Σ  

 
2.3  Two helical involutes in contact 

The following theorem completes the confirmation that the 
advantages (ii)–(iv) of planar involute gearing as listed 
above are still true for spatial involute gearing: 

Theorem 4 (Phillips' 2nd Fundamental Theorem) 
If two given helical involutes 1,Φ 2Φ  are placed in  mutual 
contact at point E and if their axes are kept fixed in this 
position, then 1Φ  and 2Φ  serve as tooth flanks for uniform 
transmission whether the axes are parallel, intersecting or 
skew. According to (9) the transmission ratio i depends only 
on 1Φ  and 2Φ  and not on their relative position. Therefore 
this spatial gearing remains independent of errors upon 
assembly. 

Proof:  When the two flanks 1,Φ 2Φ  rotate with constant 
angular velocities 10 ,ω 20ω  about their axes 10 ,p  20p  and 
point E runs relatively along the slip tracks with appropriate 
velocities, then with respect to 0Σ  point E traces e with the 
velocities 

 10 1 1ˆ sinω α α−   and  20 2 2ˆ sin ,ω α α−  

respectively, due to (12). By (9) these velocities are equal at 
any moment. Hence the initial contact between 1Φ  and 2Φ  
at E is preserved under simultaneous rotations with 
transmission ratio i.   
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Figure 6:  Spatial involute gearing together with the effective slip tracks on the flanks. List of dimensions: Transmission ratio 

2 / 3,i = −  numbers of teeth: 1 18,z =  2 27z = ; contact ratio 1.095; dual angle between 10p  and 20p : 0 21.35 ,α = °  
0ˆ 117.01;α =  dual angles between 0ip  and the fixed contact normal 1: 60.0 ,e α = − °  1ˆ 45.0,α = 2 76.98 ,α = ° 2ˆ 60.0,α = and 

(compare Fig. 3) angle 14.0 .θ = °  
 

 
     10 0ϕ = °                 10 3.6ϕ = °              10 7.2ϕ = °               10 10.8ϕ = °              10 14.4ϕ = °            10 18.0ϕ = °  

Figure 7:  Different postures of meshing involute teeth for inspecting the backlash. e is the line of contact. 
Interval of the input angle 10 3.6∆ϕ = ° , interval of the output angle 20 2.4∆ϕ = − ° . 

 

Figure 8:  Different postures of meshing involute gear flanks together with the effective slip tracks,  
seen in direction of the contact normal e. The second wheel is displayed as a wireframe. 
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2.4  Involute gear flanks with line contact 

Suppose there is any pair of flanks  1,Φ 2Φ  with permanent 
line contact while each point E of contact traces a straight 
line e in 0 .Σ  
Then the line g of contact generates in 0Σ  a ruled surface Γ  
while g remains an orthogonal trajectory of the generators. 
Due to a standard theorem of Gauss any two orthogonal 
trajectories intersect all generators of Γ in segments of equal 
length. Therefore all points iE g∈ ⊂ Σ  must have the same 
absolute velocity 0E v  by (12), i.e., the dual angles iν  
between surface normals n of iΦ  along g and the axis 0ip  
obey  

 1 1 2 2ˆ ˆ ˆsin sin const . 0.i cν ν ν ν= = = ≠  (14) 

This defines a (nonlinear) congruence of lines. 
Conversely, with the arguments used in the proof of 
Theorem 4 we can confirm that these equations are sufficient 
for continuing line contact between 1Φ  and 2 .Φ  
 
Theorem 5   

1,Φ 2Φ  are flanks for involute gears with permanent  
contact along a curve g if and only if g is an orthogonal  
trajectory of a ruled surface Γ  with generators included in 
the line congruence (14). The flanks iΦ  are swept by slip 
tracks passing through the points .E g∈   
Particular examples of such flanks are the helical involutes 
mentioned in Theorem 3. Their generators are the lines of 
contact; the ruled surface Γ  is a plane parallel to both axes 

10p  and 20p  (cf. Stachel (2004)).   
 
This particular example arises when the congruence (14) 
contains a line n which is located in a plane Γ  parallel to 

10p  and 20.p Then all lines parallel to n and included in Γ  
obey (14), too. 
Orthogonal trajectories of this pencil of parallel lines are 
generators of helical involutes 1Φ  and 2Φ  as mentioned in 
Lemma 3. In Fig. 5 a generator 1 1g ⊂ Φ  is depicted together 
with equal velocity vectors 0Ev  at different points 1.E g∈  
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