Schraubtorsen als Zahnflanken

Hellmuth Stachel Institut für Diskrete Mathematik und Geometrie, TU Wien email: stachel@dmg.tuwien.ac.at

Zusammenfassung

Es ist seit langem bekannt, dass Schrägzahnflanken über Stirnrädern mit Evolventenverzahnung von Schraubtorsen gebildet werden. Dass diese Flächen eine gleichförmige Bewegungsübertragung auch zwischen windschiefen Drehachsen ermöglichen, wurde erst in den letzten Jahren entdeckt und wird im Folgenden auf darstellend-geometrische Weise begründet.

1 Einleitung

Zahnrädergetriebes haben die Aufgabe, Drehungen des Antriebsrades Σ_1 (Achse p_{10} , Winkelgeschwindigkeit ω_{10}) auf jene des Abtriebsrades Σ_2 (Achse p_{20} , Winkelgeschwindigkeit ω_{20}) zu übertragen, und zwar in der Regel gleichförmig¹, also mit einem konstanten Übersetzungsverhältnis

$$i := \omega_{20}/\omega_{10} = \text{konst.} \tag{1}$$

Je nach Lage der Achsen zueinander unterscheiden wir

Verzahnung	Achsen p_{10}, p_{20}	$Zahnr \ddot{a}der$
ebene Verzahnung	parallel	Stirnräder
sphärische Verzahnung	schneidend	Kegelräder
räumliche Verzahnung	windschief	Hyperboloidräder (z.B.
		Schneckenräder bei $p_{10} \perp p_{20}$)

Die weitaus häufigste Verzahnungsart für parallele Achsen ist die Evolventenverzahnung (Abb. 2). Dabei können die Zahnräder entweder als Zylinderflächen mit den Stirnrädern als Querschnitt gefertigt werden oder aber auch als *Schrägzahnflanken* in Form von Schraubflächen (Abb. 1). Die dabei entstehenden Flankenflächen sind bekanntlich Schraubtorsen, also die Tangentenflächen von Schraublinien (Abb. 3, vgl. etwa [1, 6]). Die Berührkurve zwischen zwei in

¹Es gibt auch ungleichförmig übertragende Flankenpaare, doch bleiben diese hier außer Acht.

Eingriff stehenden Zahnflanken ist dabei geradlinig und die gemeinsame Tangentialebene längs dieser Berührstrecke konstant.

Nun hat der Australier Jack PHILLIPS kürzlich entdeckt und in seinem Buch [3] sehr ausführlich und reich illustriert dargestellt, dass Schraubtorsen sogar noch bei zueinander windschiefen Drehachsen p_{10}, p_{20} als Flankenflächen für eine gleichförmige Bewegungsübertragung verwendbar sind. Dies ergibt dann allerdings eine *Punktverzahnung*, also mit einer in der Regel nur punktförmigen Berührung zwischen den Zahnflanken. Doch ist letzteres bei windschiefen p_{10}, p_{20} der Normalfall.

Abbildung 1: Schrägzahnflanken zur Evolventenverzahnung

Diese räumliche Evolventenverzahnung hat folgende bemerkenswerte zusätzliche Eigenschaft: Das Übersetzungsverhältnis i hängt nur von den Abmessungen der beteiligten Schraubtorsen ab, nicht aber von der relativen Lage der Drehachsen p_{10}, p_{20} zueinander. Diese Verzahnung ist also unempfindlich gegenüber Montagefehlern.

Im Folgenden wird diese neue Verzahnungsart kurz vorgestellt und begründet, wobei vorwiegend darstellend-geometrische Methoden benutzt werden und nur die Grundlagen der ebenen Kinematik vorausgesetzt werden. Gleichzeitig soll dies dazu anregen, im Unterricht aus Darstellender Geometrie derartige Zahnräder mit einer 3D-Modellierungssoftware zu entwerfen und das entstandene Zahnrädergetriebe dann auch noch zu animieren.²

 $^{^2\}mathrm{Ein}$ Beitrag von W. RATH mit Tipps zur Modellierung mittels MicroStation ist für das kommende Heft geplant.

2 Kinematische Grundlagen

2.1 Ebene Verzahnungen

Für ebene Verzahnungen gilt bekanntlich (vgl. [1, 6])

Satz 1 (Ebenes Verzahnungsgesetz) Die Kurven c_1 aus Σ_1 und c_2 aus Σ_2 sind genau dann Zahnprofile für eine gleichförmige Bewegungsübertragung, wenn die Eingriffsnormale e, also die gemeinsame Normale im Berührpunkt E, stets durch den Relativpol 12 geht. Dabei teilt 12 die Strecke zwischen den Radmitten 01, 02 im Verhältnis

 $\overline{12\ 01}:\overline{12\ 02}=\omega_{20}:\omega_{10}=i:1.$

Abbildung 2: Evolventenverzahnung mit der konstanten Eingriffsnormalen e

Die von L. EULER (1765) entwickelte (ebene) Evolventenverzahnung ist gekennzeichnet durch die Eigenschaft, dass alle Eingriffsnormalen e zusammenfallen (Abb. 2). Die Zahnprofile c_1, c_2 sind Kreisevolventen. Diese ergeben bei Verschraubung um die jeweilige Drehachse Schraubtorsen. Dabei ist die Evolute g_j der Kreisevolvente c_j die Spurkurve des Drehzylinders durch die Gratlinie der jeweiligen Torse (Abb. 3). Nachdem von den Profilkurven nur spitzenfreie Bögen verwendbar sind, treten bei den Flankenflächen nur Bereiche außerhalb der Gratlinie auf, die damit zur Gänze auf nur einem Mantel der Torse liegen.

Die ebene Evolventenverzahnung weist gegenüber anderen ebenen Verzahnungsarten die folgenden Vorteile auf:

(i) Bei konstantem ω_{10} läuft der Eingriffspunkt E relativ zum Rastsystem Σ_0 auf der konstanten Eingriffsnormalen e mit konstanter Geschwindigkeit.

- (ii) Die übertragende Kraft hat die konstante Wirkungslinie e und ist daher bei konstantem Antriebsmoment ebenfalls konstant.
- (iii) Das Übersetzungsverhältnis $i = \omega_{20}/\omega_{10}$ ist unempfindlich gegenüber Montagefehlern.

Es wird sich herausstellen, dass alle diese Eigenschaften auch noch auf die räumliche Evolventenverzahnung zutreffen.

2.2 Räumliche Verzahnungen

Zunächst ein wichtiger Hilfssatz über räumliche Verzahnungen:

Abbildung 3: Schraubtorse als Tangentenfläche einer Schraublinie

Abbildung 4: Beweis des Satzes 2

Satz 2 Mittels der Flankenflächen Φ_1 aus Σ_1 und Φ_2 aus Σ_2 werde eine Drehung von Σ_1 um p_{10} übertragen auf jene von Σ_2 um p_{20} .

Dann legt ein einziger Berührpunkt E zwischen Φ_1 und Φ_2 bereits das augenblickliche Verhältnis $i = \omega_{20}/\omega_{10}$ der Winkelgeschwindigkeiten fest. Dieses hängt

allerdings nur von der Eingriffsnormalen e, also der gemeinsamen Normalen der Flankenflächen im Eingriffspunkt E ab gemäß der Formel

$$i = \frac{\omega_{20}}{\omega_{10}} = \frac{\widehat{\alpha}_1 \sin \alpha_1}{\widehat{\alpha}_2 \sin \alpha_2}.$$
 (2)

Dabei sind $\hat{\alpha}_j$ und α_j orientierter Abstand bzw. Winkel³ zwischen e und der Drehachse p_{j0} für j = 1, 2.

Beweis: Sei ${}_{E}\mathbf{v}_{0}$ der augenblickliche Geschwindigkeitsvektor des Eingriffspunktes E gegenüber Σ_{0} . Dann ist diese Absolutgeschwindigkeit zusammenzusetzen aus der Führungsgeschwindigkeit ${}_{E}\mathbf{v}_{j0}$, die E bei der Drehung des Rades Σ_{j} gegenüber Σ_{0} erfährt, und der Relativgeschwindigkeit ${}_{E}\mathbf{v}_{j}$, mit welcher E sich auf der jeweiligen Zahnflanke $\Phi_{j} \in \Sigma_{j}$ verändert. Das führt zu

$${}_{E}\mathbf{v}_{0} = {}_{E}\mathbf{v}_{10} + {}_{E}\mathbf{v}_{1} = {}_{E}\mathbf{v}_{20} + {}_{E}\mathbf{v}_{2}, \qquad (3)$$

Nachdem $_{E}\mathbf{v}_{1}$ und $_{E}\mathbf{v}_{2}$ parallel zur gemeinsamen Berührebene ε sind, müssen die in der Richtung von e verlaufenden Komponenten von $_{E}\mathbf{v}_{10}$ und $_{E}\mathbf{v}_{20}$ übereinstimmen.

Zur Feststellung der Größe dieser Komponenten betrachten wir zunächst das erste Rad und wählen p_{10} und e parallel zur Aufrissebene (siehe Abb. 4): Ist der von der Drehung um p_{10} stammende Geschwindigkeitsvektor $_E \mathbf{v}_{10}$ unter dem Winkel φ gegenüber der Aufrissebene geneigt, so erhalten wir als Länge des Aufrisses $_E \mathbf{v}_{10}''$

$$r\omega_{10}\cos\varphi = (r\cos\varphi)\omega_{10} = \widehat{\alpha}_1\omega_{10},\tag{4}$$

wobei $r = \overline{Ep_{10}}$ ist. Wir erkennen, dass diese Aufrisslänge für alle Punkte von e gleich ist. Ihre Komponente in Richtung der gewählten Orientierung von e beträgt $-\omega_{10}\hat{\alpha}_1 \sin \alpha_1$, was mit (3) zur Gleichung

$$-\omega_{10}\widehat{\alpha}_1\sin\alpha_1 = -\omega_{20}\widehat{\alpha}_2\sin\alpha_2 \tag{5}$$

führt und nach einer einfachen Umformung weiter zu (2).

Korollar 3 (Räumliches Verzahnungsgesetz) Die Flächen Φ_1 und Φ_2 sind genau dann Zahnflanken für eine gleichförmige Bewegungsübertragung von Σ_1 auf Σ_2 , wenn die Eingriffsnormalen e in allen Berührpunkten E die Gleichung (2) erfüllen, wobei $\hat{\alpha}_j$ und α_j für j = 1, 2 den orientierten Abstand bzw. Winkel zwischen e und der Drehachse p_{j0} bezeichnen (siehe Abb. 5).

³Um Abstand und Winkel vorzeichenbehaftet angeben zu können, muß neben den Orientierungen der Drehachsen p_{10}, p_{20} auch noch eine der Eingriffsnormalen e willkürlich festgesetzt werden.

Bemerkung: Die Gleichung (2) definiert einen linearen Geradenkomplex, den Normalenkomplex der Relativbewegung Σ_2/Σ_1 . Stellt man die Drehachsen p_{10}, p_{20} , die orientierte Eingriffsnormale e und die Momentanschraube von Σ_2/Σ_1 durch duale Vektoren $\underline{\mathbf{p}}_{10}, \underline{\mathbf{p}}_{20}, \underline{\mathbf{e}}$ bzw. $\underline{\mathbf{q}}_{21}$ dar (siehe z.B. [2, 4]), so folgt (2) unmittelbar aus der Gleichung des Normalenkomplexes

$$\underline{\mathbf{q}}_{21} \cdot \underline{\mathbf{e}} = (\omega_{20} \underline{\mathbf{p}}_{20} - \omega_{10} \underline{\mathbf{p}}_{10}) \cdot \underline{\mathbf{e}} \in \mathbb{R} \iff \omega_{20} \widehat{\alpha}_2 \sin \alpha_2 - \omega_{10} \widehat{\alpha}_1 \sin \alpha_1 = 0.$$

3 Räumliche Evolventenverzahnung

Die räumliche Evolventenverzahnung wird nach J. PHILLIPS [3] definiert durch die Eigenschaft, dass jeder Eingriffspunkte E gegenüber Σ_0 auf einer konstanten Eingriffsnormalen e verbleibt. Dabei muß nur vorausgesetzt werden, dass e keine der Drehachsen p_{10} oder p_{20} schneidet und auch zu keiner orthogonal ist.

Die Konstanz von e garantiert nach Satz 2 bereits ein konstantes Überset-Pringsverhältnis. In den verschiedenen Postionen des Eingriffspunktes $E \in e$ sind die gemeinsamen Tangentialebenen ε an die Flankenflächen Φ_1, Φ_2 stets orthogonal zu e. Wie sehen mögliche Flankenflächen überhaupt, welche Kurven durchläuft E auf den Flächenflächen?

Abbildung 5: Die Lage der Eingriffsnormalen e zu den Radachsen p_{10}, p_{20}

3.1 Relativbahnen des Eingriffspunktes

Um festzustellen, welche Bahn s_1 der Eingriffspunkt E relativ zu Σ_1 auf Φ_1 beschreibt, beachten wir: Σ_1/Σ_0 ist eine Drehung um p_{10} , und relativ zu Σ_0 läuft

E auf e. Somit liegt die Relativbahn s_1 auf dem einschaligen Drehhyperboloid Π_1 durch e mit der Achse p_{10} .

Nachdem der Eingriffspunkt E stets auf der Flankenfläche Φ_1 liegen muß, deren Tangentialebene ε in E zu e normal ist, ist die Tangente an s_1 in E orthogonal zu e (vgl. Abb. 5). Die gesuchte Relativbahn s_1 ist somit eine orthogonale Trajektorie einer Erzeugendenschar des Drehhyperboloids Π_1 (Abbn. 6 und 7).

jektorie einer Erzeugendenschar des Drehhyperboloids Π_1 samt Teil der längs s_1 orthogonal durchsetzenden Schraubtorse Φ_1

Abbildung 7: Relativbahn s_1 ('Bettfedernkurve')

3.2 Flankenflächen der Evolventenverzahnung

Die einfachste Zahnflanke Φ_1 entsteht als Hüllfläche der Eingriffsebenen ε , während E eine Relativbahn durchläuft.⁴ Dass dies eine *Schraubtorse* ist, welche das Drehhyperboloid Π_1 längs s_1 orthogonal durchsetzt, läßt sich wie folgt zu begründen (siehe Abb. 8):

Wenn wir das Rad Φ_1 mit der konstanter Winkelgeschwindigkeit ω_{10} drehen und *E* gleichzeitig derart auf s_1 laufen lassen, dass *E* gegenüber Σ_0 auf *e* verbleibt, so bewegt sich *E* längs *e* mit der (im Sinne von *e* orientierten) Geschwindigkeit (vgl. (5))

$${}_{E}v_{0|1} = -\omega_{10}\widehat{\alpha}_1 \sin \alpha_1 = \text{konst.}$$
(6)

⁴Bei einer Punktverzahnung ist 'theoretisch' nur der Flächenstreifen längs s_1 wesentlich.

Abbildung 8: Geschwindigkeiten von E und S

Aus deren Konstanz folgt, dass sich auch die durch E gehende Eingriffsebene ε gegenüber Σ_0 mit konstanter Geschwindigkeit längs e verschiebt. Demnach hat auch ihr Schnittpunkt S mit der Achse p_{10} eine konstante Geschwindigkeit. Diese lautet im Sinne der Orientierung von p_{10} (siehe Abb. 8; e und p_{10} liegen wieder aufrissparallel)

$${}_{S}v_0 = -\omega_{10}\widehat{\alpha}_1 \tan \alpha_1. \tag{7}$$

Nun zur Bewegung von ε gegenüber Σ_1 : Die Eingriffsebene ε dreht sich um p_{10} mit $-\omega_{10}$, während sie sich gleichzeitig längs p_{10} mit der Geschwindigkeit ${}_{S}v_0$ verschiebt. Die Hüllfläche Φ_1 ist somit eine *Schraubtorse* (siehe Abb. 9) mit dem Radius $r_1 = \hat{\alpha}_1$ und dem Schraubparameter

$$h_1 = \frac{sv_0}{-\omega_{10}} = \hat{\alpha}_1 \tan \alpha_1. \tag{8}$$

 Φ_1 ist durch *e* bis auf Verschiebungen längs p_{10} oder Drehungen um p_{10} bestimmt.

3.3 Koordinatendarstellung der Relativbahnen

Wählt man ein kartesisches Koordinatensystem, dessen Koordinatenebene z = 0den Kehlkreis des Hyperboloids Π_1 enthält, so läßt sich die durch den Punkt

Abbildung 9: Schraubtorse Φ_1 mit Relativbahnen s_1

 $(\hat{\alpha}_1, 0, 0)$ gehende Relativbahn wie folgt parametrisieren:

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \widehat{\alpha}_1 \begin{pmatrix} \cos t \\ \sin t \\ 0 \end{pmatrix} + \widehat{\alpha}_1 t \sin \alpha_1 \begin{pmatrix} \sin \alpha_1 \sin t \\ -\sin \alpha_1 \cos t \\ \cos \alpha_1 \end{pmatrix} = \widehat{\alpha}_1 \begin{pmatrix} \cos t \\ \sin t \\ t \tan \alpha_1 \end{pmatrix} - \widehat{\alpha}_1 t \sin^2 \alpha_1 \begin{pmatrix} -\sin t \\ \cos t \\ \tan \alpha_1 \end{pmatrix}.$$

Dabei ist t als Zeit gewählt und $\omega_{10} = 1$. Die erste Darstellung bezieht sich auf s_1 als Flächenkurve des einschaligen Drehhyperboloids Π_1 . In der zweiten Zeile wird s_1 als Flächenkurve der Schraubtorse Φ_1 gezeigt (vgl. Abb. 6).

4 Hauptsätze

Satz 4 (Erster Hauptsatz) Schraubtorsen Φ_1, Φ_2 mit den Achsen p_{10} bzw. p_{20} und mit der konstanten Eingriffsnormalen e als Flächennormale sind passende Zahnflanken für eine räumliche Evolventenverzahnung mit Punktberührung.

Satz 5 (Zweiter Hauptsatz) Werden zwei Schraubtorsen Φ_1, Φ_2 derart positioniert, dass sie einander in einem Punkt E berühren, und werden ihre Achsen p_{10}, p_{20} nun fixiert, so sind Φ_1 and Φ_2 passende Zahnflanken für ein konstantes Übersetzungsverhältnis, gleichgültig, ob die Achsen parallel, schneidend oder windschief sind. Das Übersetzungsverhältnis genügt der Gleichung

$$i = \frac{\omega_{20}}{\omega_{10}} = \frac{r_1 \sin \alpha_1}{r_2 \sin \alpha_2}$$

mit r_j als Radius des Gratzylinders und $h_j = r_j \tan \alpha_j$ als Schraubparameter von Φ_j für j = 1, 2. Das Übersetzungsverhältnis ist somit unabhängig von der relativen Lage der Radachsen.

Beweis: Wir beginnen mit einer Lage, in welcher Φ_1 und Φ_2 einander in Eberühren. Dreht sich nun Σ_j , j = 1, 2, mit konstantem ω_{j0} um p_{j0} und läuft E gleichzeitig entlang s_j mit einer geeigneten Geschwindigkeit, so bewegt sich E nach (6) gegenüber Σ_0 auf der gemeinsamen Flächennormalen e mit der Geschwindigkeit $_E v_{0|j} = -\omega_{j0} r_j \sin \alpha_j$ (siehe Abb. 8). Die anfängliche Berührung bleibt erhalten, sofern stets $_E v_{0|1} = _E v_{0|2}$ gilt. Dies ist nach Satz 2 äquivalent zum konstanten Übersetzungsverhältnis i.

Die Invarianz des Ubersetzungsverhältnisses hängt auch damit zusammen, dass sämtliche Flächennormalen einer Schraubtorse denselben Abstand von der Achse und denselben Winkel mit der Achse einschließen.

Neu gegenüber [3] ist

Satz 6 Während der gleichförmigen Bewegungsübertragung mittels zweier Schraubtorsen Φ_1, Φ_2 bleibt der im Eingriffspunkt E auftretende Winkel zwischen den Torsenerzeugenden $g_1 \subset \Phi_1$ und $g_2 \subset \Phi_2$ konstant. Dieser Winkel ist kongruent zum Winkel θ , welcher von den gemeinsamen Normalen n_1, n_2 zwischen e und den Achsen p_{10} bzw. p_{20} eingeschlossen wird (Abb. 5).

Beweis: Die Erzeugenden $g_1 \subset \Phi_1$ und $g_2 \subset \Phi_2$ sind ebenso wie die gemeinsamen Normalen n_1 und n_2 orthogonal zu der in Σ_0 festen Eingriffsnormalen e. Zusätzlich ist g_j , j = 1, 2, orthogonal zu n_j (siehe Abb. 8). Also sind $\gtrless g_1 g_2$ und $\blacklozenge n_1 n_2$ als Normalwinkel zueinander kongruent (siehe auch Abb. 5).

Im Sonderfall $\theta = 0$ entsteht

Korollar 7 Werden zwei Schraubtorsen Φ_1, Φ_2 derart platziert, dass sie einander längs einer Erzeugenden berühren, so bleibt diese Linienberührung während der gleichförmigen Bewegungsübertragung bestehen. In diesem Fall liegen alle Eingriffsnormalen in derselben Parallelebene zu den beiden Achsen.⁵

⁵Die Frage, ob es noch andere evolventenverzahnte Flanken mit Linienberührung gibt, wird in [5], Theorem 5 positiv beantwortet.

Abbildung 10: Evolventerverzahnte Räder samt effektiven Relativbahnen; e ist die konstante Eingriffsnormale

Abb. 10 zeigt zwei in Eingriff stehende evolventenverzahnte Zahnräder zum Übersetzungsverhältnis i = -2/3 mit den Zähnezahlen $z_1 = 18$ und $z_2 = 27$. Die zwei Radachsen p_{10} und p_{20} sind windschief bei $\alpha_0 = 21.35^\circ$, $\hat{\alpha}_0 = 117.01$. Die gewählte Eingriffsnormale e ergibt $\alpha_1 = -60.0^\circ$, $\hat{\alpha}_1 = 45.0$, $\alpha_2 = 76.98^\circ$, $\hat{\alpha}_1 = 60.0$. Der Winkel zwischen den jeweils treffenden Torsenerzeugenden ist $\theta = 14.0^\circ$. p_{12} ist die Achse der Relativbewegung Σ_2/Σ_1 . Die auf den Zahnflanken eingetragenen Kurvenbögen zeigen die effektiven Relativbahnen des Eingriffspunktes. In [5] sind auch noch Ansichten der Zahnflanken in Richtung von e sowie — zur Kontrolle des Flankenspiels — normal zu e gezeigt.

Literatur

- [1] F. HOHENBERG: Konstruktive Geometrie in der Technik. 3. Aufl., Springer Verlag, Wien 1966.
- [2] M. HUSTY, A. KARGER, H. SACHS, W. STEINHILPER: *Kinematik und Robotik*. Springer-Verlag, Berlin-Heidelberg 1997.

- [3] J. PHILLIPS: General Spatial Involute Gearing. Springer Verlag, New York 2003, 498 p.
- [4] H. STACHEL: Instantaneous spatial kinematics and the invariants of the axodes. Proc. Ball 2000 Symposium, Cambridge 2000, no. 23, 14 p.
- [5] H. STACHEL: On Jack Phillips' Spatial Involute Gearing. Proc. 11th ICGG, Guangzhou / China, 2004, 43–48.
- [6] W. WUNDERLICH: *Ebene Kinematik*. Bibliographisches Institut, Mannheim 1970.