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 ABSTRACT:  All normal lines of a helical developable Φ  have the same distance to its axis a  and 

make the same angle with a . This implies that on coaxial one-sheet hyperboloids of revolution or 

skew ruled helical surfaces with generators included in the normal-congruence of Φ  any orthogonal 

trajectory of the rulings is located on a translate of Φ .  

Let line n  be the normal of the helical developable Φ  at C . When Φ  performs a helical motion or 

rotation about its axis a  with constant velocity, then the point C  of intersection with the fixed nor-

mal line n  runs along n  with constant velocity, too. The same holds for circular involutes in the 

plane. This property offers the most simple way to grasp why helical developables serve as tooth 

flanks for skew gearing according to Jack Phillips (2003) and why the gear ratio is independent from 

the relative position of their axes.  

The generators of two conjugate tooth flanks 1Φ  and 2Φ  passing through the instantaneous point C  

of contact remain parallel to their respective initial position. The corresponding osculating cones of 

the tooth flanks have axes fixed in the gear box and parallel to the related helical axis. 
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1. INTRODUCTION 

We start with a lemma from plane kinematics: 

Lemma 1: Let c  be an involute of the circle 
*c  with radius r . Suppose, n  is the normal 

line of c  at any point C c∈  (Figure 1). 

When c  rotates about its center O  with con-

stant angular velocity ω  and n  is kept fixed, 

then the point C  of intersection with n  runs 

with constant velocity Cv rω=  along n  while 

c  remains orthogonal to n . The point *C  of 

contact between n  and *c  is the common 

curvature center of C  at each posture of c . 

Proof: All this follows from the fact, that the 

involute c  is traced by C n∈  while n  is roll-

ing on the fixed evolute *c . The orientation of 

Cv  is induced by the rotation about O . An-

other explanation results from seeing *c  as a 

spool and C  as the endpoint of a tightened 

thread which is rolled up on *c . Now imagine  

that you pull the thread at its end C  in direc-

tion of n , while center O  is fixed.    □ 

 

Figure 1: Rotation of the involute c . 

As a consequence of Lemma 1, take two cir-

cular involutes 1c , 2c  (radii 1r , 2r ), which are 

in contact at C  and which therefore share the 

normal line n  at C . If  both involutes rotate 

about their centers iO , 1,2i = , with velocities 

iω  such that 

1 1 2 2r rω ω=            (1) 

then the contact at C  will be preserved during 

this simultaneous movement (Figure 2). This 

results because both curves remain orthogonal 
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to n  and their point of intersection with n  

runs with the same velocity Cv  with respect to 

both curves. 

This is the geometric background of involute 

gearing, invented 1765 by L. Euler (see [11, 3, 

4]). 1c , 2c  are conjugate tooth profiles. n  is 

the fixed contact normal and meshing line. The 

curvature centers *
1C , *

2C  of 1c  and 2c , resp., 

at each meshing point C n∈  are fixed in the 

gear box (Figure 2).  

We immediately conclude from (1) that invo-

lute gearing is insensitive against errors of 

assembly. The corresponding transmission ra-

tio 2 2 1 2/ /r rω ω =  does not depend on the dis-

tance 1 2O O  but only on the dimensions of the 

two involutes.  

 
Figure 2: Planar involute gearing. 

In theory, the transmission would be preserved 

even after C  passes the cusp on ic  and the 

convex side of ic  is replaced by the concave 

one (note Figure 1). Of course, a real world 

tooth profile cannot have any cusp. Hence only 

segments of the involutes can be used in prac-

tice. 

In the sequel we study the 3D-analogue: In-

stead of the circular involute we use a helical 

developable Φ  – sometimes called helical 

involute – and let it perform a helical motion 

along its axis a . Then an analogous lemma 

holds true (Lemma 3), which offers a most 

simple approach to all the surprising properties 

of spatial involute gearing. This is a new type 

of skew gearing invented by Jack Phillips and 

first presented 2003 in the monograpy [5] (note 

also [8, 2]). 

The slip tracks of this gearing are orthogonal 

trajectories of the rulings on a ruled helical 

surface or on a one-sheet hyperboloid of 

revolution. This implies that such trajectories 

are always located on certain coaxial helical 

developables.   

2. HELICAL DEVELOPABLES 

A helical developable, helical torse or helical 

involute Φ  is a ruled surface with generators 

g  tangent to a helix s  (Figure 3). This helix is 

called cuspidal edge of Φ  or line of regres-

sion. Let 0r >  be the radius of s  and 0p ≠  

be its pitch. 

In analogy to circular involutes, the helical 

developable Φ  is swept out by a line g  at-

tached to a tape when this is unrolled from the 

cylinder of revolution through s  (see [11], 

Abb. 151). 

 
Figure 3: Helical developable. 

We assume (see Figure 4) that the axis a  of  s  

is vertical and we choose point *C s∈  such that 

the tangent line g  at *C  is parallel to the front 

view plane 2π . Then the tangent plane τ  of 
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Φ  along g  is orthogonal 2π , hence the sur-

face normal n  at each point C  of g  is paral-

lel 2π . The front view (upper view in Figure 4) 

reveals immediately: 

Lemma 2: All normal lines n  of the helical 

developable Φ  with radius r  and pitch p  

have the same distance r  to the axis a  and 

make the same angle arctan /= p rα  with a . 

Conversely, the axis a  and one single normal 

line n  determine Φ  uniquely – up to transla-

tions along a .  

The angle 0≠α  is oriented and can be re-

stricted to π α π− / 2 < < / 2 . Distance 0>r  and 

angle α  are of course preserved, when g  

moves along Φ .  

Note that all points of the cuspidal edge s  are 

singular points of Φ . The tangent plane τ  

along g  osculates s  at its point *C  of contact. 

The osculating cone Ψ  of Φ  along g  is a 

cone of revolution with axis *g  parallel a  and 

vertex *C  (Figure 4). All regular points C  of 

Φ  are parabolic, and per definition the 

non-vanishing principal curvature at C g∈  is 

reciprocal to the distance CM , when M  is the 

point of intersection between the correspond-

ing  normal  n  and the axis *g .  

Lemma 3: Let s  be the cuspidal edge of the 

helical developable Φ  with axis a , radius r  

and pitch 0p ≠ . Suppose, line n  is the normal 

line at any point C∈Φ . 

When Φ  performs a helical motion with pitch 

q  and angular velocity ω  along its axis a , 

while the normal line n  is kept fixed, then the 

point C  of intersection
1
 between Φ  and n  

moves along n  with constant velocity 

( ) cos= −Cv q p ω α .         (2) 

All postures of Φ  are orthogonal to n  at C ,  

                                                        
1
 To be precise: For each posture of Φ  there is an 

equidistant sequence of points of orthogonal intersection. 

However, we focus only on a continuous movement of 

the initial point. And we ignore other points of 

non-orthogonal intersection. 

and the generators g  passing through C  are  

mutually parallel. For each of these genera-

tors g  the osculating cone Ψ  has the same 

axis *g  parallel to a  and passing through 

point  *∈C n  closest to a . The non-vanishing 

principal curvature of  Φ  at C  is reciprocal 

to the distance *C C . 

 

Figure 4: Moving a helical developable. 

Proof: Let the initial point *C  be the striction 

point of the generator g , i.e., the point of 

contact between g  and the cuspidal edge s   

(see Figures 3 and 4). Now we rotate Φ  about 

a  through ϕ  und translate it along a  by qϕ . 

Point *C  is moved into D  and Φ  reaches the 

posture 1Φ . Then we move D  along 1Φ  by 

rotation through ϕ−  and translation pϕ−  and 

obtain point 1D  which is placed exactly over 

the initial *C . The difference in height is 

( )q p ϕ− .
2
 

1D  is the striction point of the generator 

                                                        

2
 This proves that due to selfmotions of Φ  any posture 

of the unbounded developable Φ  obtained by a helical 

motion about a  can also be reached by a pure transla-

tion along a . 
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1 1g ⊂ Φ  which intersects the normal line n  at 

a point C  in the distance ( ) cosq p ϕ α−  to the 

initial *C . 

When we set tϕ ω=  with time t  and angular 

velocity ω  we obtain the velocity Cv  of the 

point of intersection as stated in Lemma 2. 

At each point C n∈  the generator 1g of 1Φ  

passing through  is parallel to the initial g . 

The osculating cone Ψ  of 1g  shares with the 

initial one the axis *g . This means that during 

the helical motion of  Φ  the osculating cone 

together with the generator 1g  performs a pure 

translation along *g  or a .  

When point C n∈  passes *C  which is closest 

to the axis a  and at the same time the striction 

point of generator g , then the convex side of 

Φ  is replaced by the concave one.     □ 

3. CONSEQUENCES FOR SKEW    

 GEARING  

Now we repeat the arguments of Section 1: 

Let two helical developables iΦ , 1,2i = , be in 

contact at point C  with the common normal 

line n . Let iΦ  have the axis ia , radius ir  and 

pitch ip . 

Suppose that both developables iΦ  simulta-

neously perform helical motions about ia  with 

angular velocities iω  and pitches iq . Under 

the condition  

1 1 1 1 2 2 2 2( ) cos ( ) cos− = −q p q pω α ω α  (3) 

at each instant the two developables remain in 

contact since by (3) point C  of intersection 

runs with the same velocity Cv  with respect to 

both developables and also the orthogonality 

between iΦ  and n  is preserved. When sub-

stituting = tani i ip r α  we obtain  

( ) cos cos sini i i i i i irq p qα α α= −−  

which leads to a condition equivalent to (3). 

Theorem 1: Let two helical developables iΦ  

(radius ir , pitch ip ) be in contact at point C . 

If then both surfaces iΦ  perform helical mo-

tions about their axes ia  with pitch iq  and 

angular velocities iω  such that  

1 1

2 2 2 2

cos sin

cos sin
1 12

1

−
=

−
q r

q r

α αω
ω α α

        (4) 

for /tan i i ip rα = , then the contact at C  is 

preserved. This means, 1Φ  and 2Φ  are two 

conjugate tooth flanks for a transmission with 

ratio 2 1/ω ω  between the two helical motions. 

The meshing point C  traces a straight line n  

fixed in the gear box.  

In the case of rotations, i.e., 1 2 0q q= = , this is 

exactly the involute gearing invented by J. 

Phillips [5, 8, 2]. Note that by equ. (4) the gear 

ratio depends only on the dimensions of the 

two tooth flanks iΦ  and the pitches 1q , 2q  of 

the helical motions, but not on their relative 

position. This means that the gear ratio 2 1/ω ω  

is independent from errors of assembly.  

In practice, the meshing point C  cannot pass 

the singular points *
1C  or *

2C  of  1Φ  and 2Φ , 

respectively – as well as at planar involute 

gearing the cusps of the profiles are excluded. 

The osculating cones of both tooth flanks at the 

contact point C  will reveal that only positions 

of C  between *
1C  and *

2C  are possible points 

of contact for spatial involute gearing. Other-

wise the two cones would penetrate each other. 

Through each meshing point C n∈  there 

passes a generator 1g  of  1Φ . We call 1g  the 

contact generator of 1Φ . By Lemma 3 all 1g  

are mutually parallel. They are orthogonal to 

n  and to the common normal 1m  between g  

and axis 1a  (see Figure 5). In the same way all 

contact generators 2g  of 2Φ  are orthogonal to 

n  and 2m  and therefore mutually parallel. 

Hence, the angle  
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1 2 1 2g g m mθ = =∡ ∡  

remains constant during the mesh (Figure 5).  

In order to check the curvatures of conjugate 

tooth flanks at the meshing point C , we re-

place at both contact generators ig  the flank 

iΦ  by its osculating cone along ig . All these 

cones have a fixed axis *
ig  parallel to ia  and 

passing through *
iC . Hence, at each posture of 

1Φ  the vertex of the osculating cone is the 

point of intersection between the fixed *
ig  and 

the generator ig  which is only translated 

(Figure 5).  

 

Figure 5: Skew involute gearing. 

 

Theorem 2: At spatial involute gearing the 

angle θ  between the contact generators 1g  

and 2g  remains constant [8]. It equals  the 

angle made by the common perpendiculars 1m , 

2m  between the meshing line n  and the axes 

1a , 2a , respectively. During the mesh the 

contact generator ig , 1,2i = , together with 

the osculating cone of the tooth flank  performs 

a translation along the axis *
ig , which is par-

allel to ia  and passes through the point *
iC n∈  

closest to ia . 

In the case 0θ =  the axes 1a , 2a  and the 

meshing line n  are parallel to a fixed plane. 

Then there is a permanent line contact be-

tween the tooth flanks along 1 2g g=  – like or-

dinary helical gears for parallel axes [4].  

It should be noted that (4) is the most general 

form for the spatial Law of Gearing. Line n  is 

a contact normal of tooth flanks for a trans-

mission between helical motions about 1a  and 

2a  with pitches 1q , 2q  and angular velocities 

1ω , 2ω , resp., if and only if (4) holds. Here iα  

is the angle and ir  the distance between n  and 

ia  (see Figure 5). In the rotational case 

1 2 0q q= =  this is equivalent to the equation 

given in [5], capture of Fig. 2.02, p. 46. 

There is also a direct way to prove eq. (4): n  is 

a contact normal if and only if it is included in 

the linear complex of normals of the relative 

motion between the two wheels [3, 6]. The 

screw of this motion in dual vector notation 

(see, e.g., [10, 1, 7, 9]) is 

21 21 21 20 10ˆε+= = −q q q q q , 

where 
0

(1 )
i ii i

qω ε= +q p  is the screw of the 

helical motion of iΦ  about the axis ia  with 

dual unit vector ip . Lines ˆε= +n n n  of the 

normal complex are characterized by 

21 IR⋅ ∈q n , i.e., 21 21
ˆ ˆ 0⋅ + ⋅ =q n q n .  

Using the formula  
sincos i iii

rεα α−⋅ =p n  

for the dot product of two dual unit vectors we 

obtain directly eq. (4).  

4. ORTHOGONAL TRAJECTORIES  

Let  Γ  be any ruled helical surface with gen-

erators neither orthogonal to the axis a  nor 

intersecting. An orthogonal trajectory o  of the 

rulings is uniquely defined by an initial point 

C on any generator n∈Γ . By Lemma 2 there 

is an unique coaxial helical developable Φ  

which passes through C  and has n  (together 

with all other generators of Γ ) included in its 

normal-congruence. 
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Φ  intersects Γ  along a smooth curve through 

C  which at each point is orthogonal to a gen-

erator of Γ . Hence this curve is identical with 

the given orthogonal trajectory o  on Γ .  

Theorem 3: On each ruled helical surface 

Γ with rulings included in the nor-

mal-congruence of a coaxial helical develop-

able Φ  each orthogonal trajectory of the rul-

ings of  Γ  is completely located on a translate 

of  Φ  (which is also an offset of Φ ). 

The slip tracks of the gearing explained in 

Theorem 1 are such orthogonal trajectories. 

This results from the fact that relative to the 

gear box the meshing point C  is located on the 

fixed contact normal n . Relatively to the tooth 

flank iΦ , 1,2i = , n  is sweeping out a helical 

surface Γ  with pitch iq . 

 

 

Figure 6: Slip track and orthogonal trajectory. 

These curves look similar to the “bedspring 

curves” of the rotational case 1 2 0q q= =  (Fig-

ure 6, notation by J. Phillips [5]). 

Theorem 3 can also be verified in an analytic 

way: Point C  traces the slip track on the 

helical developable Φ  when during the helical 

movement with parameter p  through angle ϕ  

point C  is moving along g  by the length 

( ) sinq p ϕ α− (compare Figure 4). Setting 

2 2sin / p rpα +=  leads to the parametrization 

2 2

cos sin( )
sin cos( )

r rq p p
r r

p rp p

ϕ ϕϕ
ϕ ϕ

ϕ
ϕ

−   −
   
   +   

= +c ,  

hence 

  

2 2

2 2

2 2 2
2 2

)

)

)

cos ( ( ) sin
1 s in ( ( ) cos

( ( )

( )
r p r q p pr

r p r q p pr
p r p p r q p p

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ

ϕ
 + − −
 

+ + − +  + + − 

=c . 

The same path is obtained when C  is per-

forming the helical movement with parameter 

q  through angle ϕ  and traversing n  by the 

length ( ) cosq p ϕ α− (Lemma 3, Figure 4). 

This yields  

cos sin sin
sin ( ) cos sin cos

cos
( )

r
r q p

q

ϕ α ϕ
ϕ ϕ α α ϕ

ϕ α
ϕ

−   
−   

   −   
= +c . 

The substitution 2 2cos / p rrα +=  gives 

  

2 2

2 2

2 2 2
2 2

)

)

)

cos ( ( ) sin
1 sin ( ( ) cos

( ( )

( )
−

 + − −
 

+ + − 
+  + − 

=
r p r q p pr

r p r q p pr
p r q p r q p r

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ
ϕc . 

This is in fact the same as before since in both 

cases the third coordinate equals  
2 2 2 2 )( ) /(pr qp p rϕ+ + . 

Hence the orthogonal trajectories on the ruled 

helical surface Γ  with pitch q , gorge radius r , 

and angle β ( )α=  between generators and 

axis can be parametrized by 

   
cos sin sin
sin ( cos sin ) sin cos

cos
( )

r
r q r

q

ϕ β ϕ
ϕ β β ϕ β ϕ

ϕ β
ϕ

−   
−   

   −   
= +c  

up to helical movements with pitch q  along 

the axis. 

5. CONCLUSIONS 

This is a new approach to spatial involute 

gearing based on the 3D-analogue of a prop-

erty of circular involutes in the plane. Phillips’ 

results on involute gearing are slightly gener-

alized to helical movements of the two gears. 
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For the first time also the curvature of conju-

gate helical developables at the point of con-

tact is controlled during the mesh. 
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