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Abstract: The motion under consideration is based on the fact that in the
Fuclidean space three pairwise orthogonal axes can simultaneously move
on a so-called equilateral cone. This defines a non-rational overconstrained
spherical motion g where almost each point path is simultaneously traced
by the vertices of an equilateral triangle. One path is a spherical conic.
After presenting the projective background, the matrix equation of pu is
given. Also some properties of the algebraic completion of u are discussed.

1. Introduction

The presented spherical motion p in the Fuclidean 3-space E? is character-
ized by the property that the endpoints A. B, (' of an orthonormal moving
3-frame trace the same spherical conic ¢ (see Fig. 2). This motion p is
remarkable in many respects:

— jt is overconstrained.

— There is no planar counterpart of p.

— To the author’s knowledge. until recent only trochoid motions have
been known as analytic spherical motions with multiply traced point
paths. The planar version of this problem is addressed in Miiller (1963 ),
p. 96-97. Non-analytic planar motions with a threefold path can e.g.
be found in Wunderlich (1970), p. 47-48 (Fig. 32).

— Rational spatial motions have been studied in several papers (see e.g.
Jittler and Wagner (1996)) and even been classified according to the
order of their point paths (see Wunderlich (1984), Roschel (1985) and
Jiittler (1993)). The considered spherical motion g is non-rational. The
generic point paths are of spherical order 24 . This means, that they
are projected from the fixed center O of u by cones of order 24.



2. The projective background

In the real projective plane P? an ordered pair (7q,72) of conics is called
apolar', if there is a triangle P,(Q9 R, self-polar with respect to 7; and
inscribed in v, (see Fig. 1). A standard result of Projective Geometry says

Figure 1. Apolar conics ¥1, vz

Lemma 1. Let (v1,72) be a pair of apolar conics. Then there is a one-
parameter set of triangles P,()o Ry which are self-polar with respect to 71
and inscribed in 7.

Proof: Let PoQ)yRe and S2T5U, be two triangles which both are self-polar
with respect to 71 . Then due to von Staudt the siz vertices are located
etther on two lines or on a conic. A proof can e.g. be found in Coxeter

(1993), p. 87.

Let the apolar pair (71, v2) with a defining triangle P, Ry be given. Then
specify another point 59 € 75 such that its polar line sy with respect to 1
intersects 7 at a point Ty # 53 (Fig. 1). Continuity arguments guarantee
the existence of 59 sufficiently near to Py, ()2 or Ry. The line s5 and the
polar t5 of Ty meet at a point Us which completes a second self-polar triangle
S59T,U,. There must be a conic passing through Py, Q9. Ko, 52,75, Us,. Since
this conic is uniquely defined by the first five points, it coincides with 5. O

'Baker (1930), p. 33, prefers the unsymmetric notation “y1 is inpolar to v2”.

“There is also a one-parameter set of triangles P Q1 R1 self-polar with respect to 2
and circumscribed about v; (see Staude (1915), p. 213). In Baker’s notation this means
that at the same time “y, is outpolar to ¥1”. Proofs can be found in Baker (1930), p.
33-34 or Blaschke (1954), p. 84-86. The author would like to thank an anonymous referee
for these two references.



Lemma 2. Let (zg: xy : 29) be homogeneous coordinates in P2. Then the
pair of conics (v1,72) obeying

2 2
YooY, eamizg =0, y2: Y dgwizg =0
1,k=0 1,k=0

with symmetric matrices (c;;) and (d;;) is apolar if and only if in
F(o,7):=det(oc, + 7d;p) = Joo° + Jio?T + Joor? + Ja7?

the coefficient Jy is zero.
Proof: (1) The ratio Jo:Jy:J3:J5 of coefficients in F(o, ) does not depend
on the choice of the coordinate system.

(ii) For apolar 71,7, we use a coordinate system with the fundamental
triangle Po(J9 Rs. This implies a matrix (czk) in diagonal form and vanishing
diagonal entries in (d;;), hence

agCop Td(n Tdoz
(ocik +7di) = | 7dyn oc1 7dig and
Tdog Td12 TC92

Flo,7)=det(oe, + Tdig) = C00C11C220° + T2(€O' + fr)
with certain coefficients e, f. Obviously, the coefficient J; of a7 is zero.

(iii) In order to prove the converse, we specify a coordinate system which
diagonalizes (czk) and where the fundamental point P, = (1:0:0) is located
on 7,. This implies dyg = 0.3 Suppose that in the polynomial

aJCop Td()l Td02
F’(O'7 T) = det(O'CZ‘k + lek) = det Tﬁlol gcC11 + lel Td12
Tdg2 Tdy9 acoo + Tdag

the coefficient of o7 is zero, i.e. J; = cgo(ey1dag + eg2dyy) = 0.

On the line py: 29 = 0 polar to P, with respect to 71, both conics induce
(regular or singular) involutions ¢1, ¢35 of conjugate points, namely

(0:zq129)— (0:2) ) with cy1z12] + c22925 = 0 under ¢,
! ! ! !
dyjzr2) + diz(z2h + 2a2)) + dagzszl, = 0 under ¢y

For regular (c;;) the condition J; = 0 is equivalent to the property that
the (real or conjugate complex) fixed points )5, Ry of 15 are corresponding

?Only for 41 = 72 this choice would be impossible, but then J; # 0 is true.



under ¢y, vice versa.* This proves (in the complex extension of P?) the
existence of a triangle P,()2 Ry inscribed in ~5 and self-polar with respect
to v1. O

Figure 2. The spherical motion p: ¥ /%g with the equilateral right triangle A BC' inscribed
in the equilateral spherical conic ¢

Let P? be the projective extension of the plane zy = —1 in the Euclidean 3-
space E2, which is equipped with a cartesian coordinate system (zq, yo. 20)
with origin (. Lemma 1 remains valid when v is an empty conic, e.g. with
the equation @3 + y5 + 1 = 0. In this case two points P = (zg, 49, —1) and
P = (zf,y,. —1) are conjugate with respect to ¥, if and only if

i ' ! i [ SR oA
0= zozg+ Yoy, + 1 = (20,90, —1)- (24,95, —1) = PO-P'O.

The vanishing dot product shows the equivalence to the orthogonality be-
tween the lines connecting the origin O with P and P’, respectively. There-
fore, when projected from the origin O, the one-parameter set of triangles
Py()s Ry according to Lemma 1 yields a one-parameter set of orthogonal
3-bars which all are inscribed in a cone I' of second order. And this set
defines the spherical motion i to be considered here.

*This is exactly the one-dimensional version of apolarity (the two involutions com-
mute, i.€. (1062 = (2041, but ¢1 # ¢2), and this reveals that the n-dimensional version of
Lemma 2 can be proved in a similar way by use of induction.



Corollary 1. When a quadratic cone I' contains three pairwise orthogonal
generators, then this orthogonal 3-bar is even movable on 1.

Such a cone is called equilateral. According to Lemma 2 its symmetric
matrix (¢;) is characterized by a vanishing trace tr(c;z) = 0. When the
principal axes of T serve as axes of the cartesian coordinate system in E?,
then the equation of I' can be written as

G(zo, 90, 20) = azg + Bys — 25 =0, a+p3=1, 0<a<

(1)

| —

Only for a = 3 = % this is a cone of revolution.
Remarks: 1. Let plane ¢ be a circular section of the cone I'. Then in each
position the axes of the moving frame intersect ¢ in a triangle FyF9Fs5
inscribed in the fixed circle & = I' N e. All these triangles share the center
of the circumcircle and the orthocenter. which is the pedal point of O in .
Hence, due to the properties of the Euler line, also the center of gravity is
common for these triangles in ¢. Conversely, these triangles can serve for
an elementary approach to Corollary 1.

2. With the following mechanical device the motion p can be generated:
Suppose that the vertices Fq, I'5, Fl5 are slot points for the axes of the
moving frame. Keep the origin O of this frame fixed while the three slot
points move independently from each other on the circle £ C T.

3. The 3-dimensional versions of Lemma 1 and 2 can be found in Staude
(1915), p. 213, the n-dimensional versions in Segre (1928), p. 862, footnote
287.

3. Matrix-representation of the motion p

From now on (zg, yo, 20) are seen as cartesian coordinates in the fixed space
Y of the motion . The curve of intersection between the equilateral cone
' represented in (1) and the plane z5 = 1 can be parametrized as

cos i sin ¢

o Yo = —#=
Ve Vi’
Normalization gives a parameter representation of the curve of intersection

between I' and the unit sphere S2 In the following ¢ denotes one connected
component of this spherical conic. Its parametrization reads

V3 cost
ci(t) = NG vasint | with r:= (a — @)sin?t + (1 +a)s, (2
vap

ro = =1, 0<t<27.
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Figure 3. Top view of the motion g with the initial position AgBoCy of the moving
triangle, the path m of the triangle’s center and the envelope ¢ of the three sides

as a + 3 = 1. For each t the lines of intersection between I' and the plane

zov/ B cost + yo/asint + zpv/al =0 (3)

perpendicular to ¢;(¢) define the position of the other two axes of the mov-
ing frame. We normalize their direction vectors such that the zp-coordinate
is positive. The demand for a right handed frame defines the order of these
two unit vectors cy(t), e3(?) in a unique way.

Let the axes of this moving 3-bar serve as axes of a cartesian coordinate
system (z,y, z) in the moving space ¥. Then the vectors e;(2), ca(t), es(?)
are the columns in the orthogonal matrix C which represents p. We obtain

Theorem 1. In matrix-form the motion pu: ¥ /Xg can be represented as

( o ) = (ea(1) eal?) ea(t)) ( y ) . (4)

Here the first column vector ¢q(t) meets (2). The other two unit vectors
co(t),c3(t) obey (1) and (3) such that their zp-coordinates and the triple
product det(cy(t), ca(t), cs(t)) are positive.



Fq. (4) enables to visualize the constrained spherical motion p: In Fig. 2 one
position of the moving spherical octant ABC with center M is displayed.
Fig. 3 shows several positions of the moving triangle together with the
ellipse-shaped path m of M. The selected positions of ABC' C ¥ originate
from an equal spacing of the path m. In Fig. 3 also the envelope ¢ of the
moving octant is displayed. ¢ is again a spherical conic; it is located on the
cone I' orthogonal to I', i.e. T is tangent to the planes which are orthogonal
to the generators of I

Figure 4. The complete path m of M under @ and the path p with the tracing equilateral
triangle Po P P>

During one turn of g the moving triangle ABC returns twice to its initial
position AgBgCy, however rotated under 120° and 240°, respectively. Let
Fo, Pi. P, be the corresponding positions of any point P of the moving
system for P # M. Then PyP, P, is again an equilateral triangle with
vertices tracing the same spherical path p under p (see Fig. 4).

4. Algebraic properties of

Fach position ¥(¢) of the moving space obtained under g is uniquely deter-
mined either by the corresponding orthogonal matrix C according to (4)



or by the quaternion q(¢) = a + bi + ¢j + dk obeying

at+ b2 — ¢t — d* 2(be — ad) 2(bd + ac)
T:=DC 2(bc + ad) a’—b* 4 ¢? — d* 2(ecd — ab)
2(bd — ac) 2(cd + ab) a’— b*— 2+ d? (h)

with D := a® + b* 4 ¢ + d*. For each { the quaternion g(t) is unique up to
a real factor only. The mapping

k: P? = SO3, (a:b:c:d)HC:%T

is the so-called spherical kinematic mapping.

Since the unit points (1,0,0),(0,1,0),(0,0,1) of the moving coordinate sys-
tem trace the same curve c¢ in Yo, the column vectors t{,t,,t3 of T must
obey the equation G(x) = 0 of the equilateral cone I' in (1). This gives

Fy:=G(t1) = ala® + 0% — 2 — d*)? + 48(ad + bc)? — 4(ac — bd)* = 0
Fy := G(ty) = 4a(ad — be)? + ﬁ(a2 — b2+ c? —d*)? —4(ab+ed)? =0
Fs:= G(t3) = da(ac + bd) + 453(ab — cd)2 — (a2 — b2 24 d2)2 = 0. (6)

However, the three homogeneous polynomials Fy, F5, I3 in the indetermi-
nates a, b, ¢, d are linearly dependent. This results from the representation

F, = G(ty) = ati, + 513, — 3, with T = (t;),
which implies for the row vectors ry,ry,r3 of T
B+ By 4 By = affri] + Bl — wsl® = DX+ 5-1)=0.  (7)

In P the set V* of zeros (a:b:c:d) of the homogeneous polynomials £} and
I% is an algebraic curve of order 16. But V* is reducible for the following
reason: The norm of each column vector of T obeys |[t]|* = D?. Hence,
(a:b:c:d)is a zero of the polynomials D and Iy = G(t1) if and only
if t1 is isotropic, i.e. [[t1]| = 0. In this case t; is isotropic too and due to
t1-t; = 0 proportional to ty, provided t; # o. Therefore Fy = D=0 and
t1 # o imply F5 = 0. A careful analysis proves that V* contains two pairs
of skew conjugate complex lines on the empty quadric Q: D = 0.

The remaining algebraic curve V of order 12 is mapped under the spherical
kinematic mapping £ onto an algebraic one-parameter motion @ which will

5VVe substitute the parameter representation ‘
()\o,uo + )\1,111), b= —21 (Aopo — Alul), c= %()\oul — )\1IL0), d= —% (Aopr + )\1110)
f Q in the equations Fi = 0 and F» = 0 and obtain ugui P(Xo, A1) = 0 and (pg +
132 P(Xo, A1) = 0, tesp., with P(Xo, A1) := (14 8)(A§ + A1) — 2(1 4 20 — B)AZAL.



be called algebraic completion of the motion u. This is a proper extension
of p as the algebraic equations F; = Fy = 0 do not rule the orientation
of the moving coordinate axes. When therefore X(#) is a position occupied
under u, then @ contains also all positions which can be achieved from
¥(t) under direct displacements which permute the non-oriented coordinate
axes. These 24 displacements form a group isomorphic to the rotational
symmetries of a cube.

Theorem 2. The preimage of the motion p under the spherical kinematic
mapping is subset of a non-rational curve V of order 12 in P>,

The path of a generic point under the algebraic completion 1 of p is of
spherical order 24 and simultaneously traced by 24 points. The paths of
points with |xz| = |y| or || = |z| or |y| = |z| are symmetric with respect to
O; the spherical order reduces to at most 12.

The center M of the moving equilateral right triangle ABC' traces a (three-
fold covered) path which obeys the equation of fourth order

m: (ke + kayd — kszd) (2l 4+ vg + 28) — (kaad + ksy3)* = 0

ki:=05+2a)(1+4a), , ky:=3(1+
by o (54 28)(1445), T (B-alf TS

)T

a)l, (8)
a).
Proof: The path of a generic point x := (2,y,2)" under [ is located on

a cone which is the image of the algebraic curve V of order 12 under the
rational (quadratic) mapping

px: PP —=P? (a:b:c:d)— (20:y0:20) for (20 yo ZO)T:TXT

according to (5) and (4). Due to standard results of Algebraic Geometry
(see e.g. Semple-Kneebone (1959), chapter VIII) the order of this cone
equals 2-12 — o with ¢ as sum of intersection multiplicities between } and
the set S of points of indeterminacy under px. This set § in P? obeying
To = Yo = 2o = 0 consists of two skew complex conjugate generators of .°
For indeterminate (z,y, z) these transcendental lines cannot pass through
any point of intersection between V and €). Thus we obtain ¢ = 0.

In order to verify the equation of the path m of M, we either use the matrix
equation (4). Or we express (g, ¥o. z0) in terms of (a,...,d) according to
(5) and show in accordance with Hilbert’s zero point theorem that a power
of the resulting polynomial is an element of the ideal which defines V.

In Fig. 3 only one connected component m of the path m is displayed which
looks like an ellipse. Fig. 4 shows two (real) components of the algebraically
completed curve 7. One is traced under p by the point (z,y,2) = (1,1,1),
the other simultaneously by (1,—1,—1),(—1,1,—1) and (—1,—1,1).

®In the notation of footnote 5 these lines obey 2popu1x +1{ug + p3)y — (u§ — pi)z = 0.



Under a # % the homogeneous equation in (8) defines an irreducible quartic
in P? without any singularity.” Therefore this quartic is non-rational which
proves that also V and the motion 7 are non-rational. O

5. Conclusion

The following items are left for future research:

— Fach analytic spherical motion can be extended into the dual sphere,
which is a model for the set of oriented lines in the E? (see e.g. Stachel
(1997)). In this sense the motion p gives rise to a two-parameter spatial
motion with the property that the axes of an orthonormal 3-bar trace
the same quadratic congruence of lines. There is perhaps a connection

with results given in Wunderlich (1980).
— p can even be generalized to a spherical m_lgﬂ—parameter motion in
the Euclidean n-space where the endpoints of an orthonormal n-frame

trace the same spherical quadric.
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