
A REMARKABLE OVERCONSTRAINEDSPHERICAL MOTIONHELLMUTH STACHELVienna University of Technology, Institute of Geometry,Wiedner Hauptstr. 8-10/113, A-1040 Wien, Austriaemail: stachel@geometrie.tuwien.ac.atAbstract: The motion under consideration is based on the fact that in theEuclidean space three pairwise orthogonal axes can simultaneously moveon a so-called equilateral cone. This de�nes a non-rational overconstrainedspherical motion � where almost each point path is simultaneously tracedby the vertices of an equilateral triangle. One path is a spherical conic.After presenting the projective background, the matrix equation of � isgiven. Also some properties of the algebraic completion of � are discussed.1. IntroductionThe presented spherical motion � in the Euclidean 3-space E 3 is character-ized by the property that the endpoints A;B;C of an orthonormal moving3-frame trace the same spherical conic c (see Fig. 2). This motion � isremarkable in many respects:� � is overconstrained.� There is no planar counterpart of �.� To the author's knowledge, until recent only trochoid motions havebeen known as analytic spherical motions with multiply traced pointpaths. The planar version of this problem is addressed in M�uller (1963),p. 96-97. Non-analytic planar motions with a threefold path can e.g.be found in Wunderlich (1970), p. 47-48 (Fig. 32).� Rational spatial motions have been studied in several papers (see e.g.J�uttler and Wagner (1996)) and even been classi�ed according to theorder of their point paths (see Wunderlich (1984), R�oschel (1985) andJ�uttler (1993)). The considered spherical motion � is non-rational. Thegeneric point paths are of spherical order 24 . This means, that theyare projected from the �xed center O of � by cones of order 24 .



2. The projective backgroundIn the real projective plane P2 an ordered pair (1; 2) of conics is calledapolar 1, if there is a triangle P2Q2R2 self-polar with respect to 1 andinscribed in 2 (see Fig. 1). A standard result of Projective Geometry says
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s2 t2Figure 1. Apolar conics 1; 2Lemma 1. Let (1; 2) be a pair of apolar conics. Then there is a one-parameter set of triangles P2Q2R2 which are self-polar with respect to 1and inscribed in 2.2Proof: Let P2Q2R2 and S2T2U2 be two triangles which both are self-polarwith respect to 1 . Then due to von Staudt the six vertices are locatedeither on two lines or on a conic. A proof can e.g. be found in Coxeter(1993), p. 87.Let the apolar pair (1; 2) with a de�ning triangle P2Q2R2 be given. Thenspecify another point S2 2 2 such that its polar line s2 with respect to 1intersects 2 at a point T2 6= S2 (Fig. 1). Continuity arguments guaranteethe existence of S2 su�ciently near to P2, Q2 or R2. The line s2 and thepolar t2 of T2 meet at a point U2 which completes a second self-polar triangleS2T2U2. There must be a conic passing through P2; Q2; R2; S2; T2; U2. Sincethis conic is uniquely de�ned by the �rst �ve points, it coincides with 2.1Baker (1930), p. 33, prefers the unsymmetric notation \1 is inpolar to 2".2There is also a one-parameter set of triangles P1Q1R1 self-polar with respect to 2and circumscribed about 1 (see Staude (1915), p. 213). In Baker's notation this meansthat at the same time \2 is outpolar to 1". Proofs can be found in Baker (1930), p.33-34 or Blaschke (1954), p. 84-86. The author would like to thank an anonymous refereefor these two references.



Lemma 2. Let (x0 : x1 : x2) be homogeneous coordinates in P2. Then thepair of conics (1; 2) obeying1 : 2Xi;k=0 cikxixk = 0 ; 2 : 2Xi;k=0dikxixk = 0with symmetric matrices �cik� and �dik� is apolar if and only if inF (�; �) := det(�cik + �dik) = J0�3 + J1�2� + J2��2 + J3�3the coe�cient J1 is zero.Proof: (i) The ratio J0 :J1 :J2 :J3 of coe�cients in F (�; �) does not dependon the choice of the coordinate system.(ii) For apolar 1; 2 we use a coordinate system with the fundamentaltriangle P2Q2R2. This implies a matrix �cik� in diagonal form and vanishingdiagonal entries in �dik�, hence(�cik + �dik) = 0@ �c00 �d01 �d02�d01 �c11 �d12�d02 �d12 �c22 1A andF (�; �) = det(�cik + �dik) = c00c11c22�3 + �2(e� + f�)with certain coe�cients e; f . Obviously, the coe�cient J1 of �2� is zero.(iii) In order to prove the converse, we specify a coordinate system whichdiagonalizes �cik� and where the fundamental point P2 = (1:0:0) is locatedon 2. This implies d00 = 0.3 Suppose that in the polynomialF (�; �) = det(�cik + �dik) = det0@ �c00 �d01 �d02�d01 �c11 + �d11 �d12�d02 �d12 �c22+ �d22 1Athe coe�cient of �2� is zero, i.e. J1 = c00(c11d22 + c22d11) = 0 :On the line p2 : x0 = 0 polar to P2 with respect to 1, both conics induce(regular or singular) involutions �1; �2 of conjugate points, namely(0 : x1 : x2) 7! (0 : x01 : x02) with c11x1x01 + c22x2x02 = 0 under �1 ;d11x1x01 + d12(x1x02 + x2x01) + d22x2x02 = 0 under �2 :For regular �cik� the condition J1 = 0 is equivalent to the property thatthe (real or conjugate complex) �xed points Q2; R2 of �2 are corresponding3Only for 1 = 2 this choice would be impossible, but then J1 6= 0 is true.



under �1, vice versa.4 This proves (in the complex extension of P2) theexistence of a triangle P2Q2R2 inscribed in 2 and self-polar with respectto 1.
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Figure 2. The spherical motion � : �=�0 with the equilateral right triangle ABC inscribedin the equilateral spherical conic cLet P2 be the projective extension of the plane z0 = �1 in the Euclidean 3-space E 3 , which is equipped with a cartesian coordinate system (x0; y0; z0)with origin O. Lemma 1 remains valid when 1 is an empty conic, e.g. withthe equation x20 + y20 + 1 = 0. In this case two points P = (x0; y0;�1) andP 0 = (x00; y00;�1) are conjugate with respect to 1 if and only if0 = x0x00 + y0y00 + 1 = (x0; y0;�1)�(x00; y00;�1) = �!PO ���!P 0O:The vanishing dot product shows the equivalence to the orthogonality be-tween the lines connecting the origin O with P and P 0, respectively. There-fore, when projected from the origin O, the one-parameter set of trianglesP2Q2R2 according to Lemma 1 yields a one-parameter set of orthogonal3-bars which all are inscribed in a cone � of second order. And this setde�nes the spherical motion � to be considered here.4This is exactly the one-dimensional version of apolarity (the two involutions com-mute, i.e. �1 � �2 = �2 � �1, but �1 6= �2), and this reveals that the n-dimensional version ofLemma 2 can be proved in a similar way by use of induction.



Corollary 1. When a quadratic cone � contains three pairwise orthogonalgenerators, then this orthogonal 3-bar is even movable on �.Such a cone is called equilateral. According to Lemma 2 its symmetricmatrix (cik) is characterized by a vanishing trace tr(cik) = 0. When theprincipal axes of � serve as axes of the cartesian coordinate system in E 3 ,then the equation of � can be written asG(x0; y0; z0) := �x20 + �y20 � z20 = 0 ; � + � = 1; 0 < � � 12 : (1)Only for � = � = 12 this is a cone of revolution.Remarks: 1. Let plane " be a circular section of the cone �. Then in eachposition the axes of the moving frame intersect " in a triangle E1E2E3inscribed in the �xed circle k = � \ ". All these triangles share the centerof the circumcircle and the orthocenter, which is the pedal point of O in ".Hence, due to the properties of the Euler line, also the center of gravity iscommon for these triangles in ". Conversely, these triangles can serve foran elementary approach to Corollary 1.2. With the following mechanical device the motion � can be generated:Suppose that the vertices E1; E2; E3 are slot points for the axes of themoving frame. Keep the origin O of this frame �xed while the three slotpoints move independently from each other on the circle k � �.3. The 3-dimensional versions of Lemma 1 and 2 can be found in Staude(1915), p. 213, the n-dimensional versions in Segre (1928), p. 862, footnote287.3. Matrix-representation of the motion �From now on (x0; y0; z0) are seen as cartesian coordinates in the �xed space�0 of the motion �. The curve of intersection between the equilateral cone� represented in (1) and the plane z0 = 1 can be parametrized asx0 = cos tp� ; y0 = sin tp� ; z0 = 1 ; 0 � t � 2� :Normalization gives a parameter representation of the curve of intersectionbetween � and the unit sphere S2. In the following c denotes one connectedcomponent of this spherical conic. Its parametrization readsc1(t) = 1pr 0B@ p� cos tp� sin tp�� 1CA with r := (�� �) sin2 t + (1 + �)�; (2)
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y0Figure 3. Top view of the motion � with the initial position A0B0C0 of the movingtriangle, the path m of the triangle's center and the envelope bc of the three sidesas �+ � = 1. For each t the lines of intersection between � and the planex0p� cos t + y0p� sin t + z0p�� = 0 (3)perpendicular to c1(t) de�ne the position of the other two axes of the mov-ing frame. We normalize their direction vectors such that the z0-coordinateis positive. The demand for a right handed frame de�nes the order of thesetwo unit vectors c2(t); c3(t) in a unique way.Let the axes of this moving 3-bar serve as axes of a cartesian coordinatesystem (x; y; z) in the moving space �. Then the vectors c1(t); c2(t); c3(t)are the columns in the orthogonal matrix C which represents �. We obtainTheorem 1. In matrix-form the motion � : �=�0 can be represented as0@ x0y0z0 1A = �c1(t) c2(t) c3(t)�0@ xyz 1A : (4)Here the �rst column vector c1(t) meets (2). The other two unit vectorsc2(t); c3(t) obey (1) and (3) such that their z0-coordinates and the tripleproduct det�c1(t); c2(t); c3(t)� are positive.



Eq. (4) enables to visualize the constrained spherical motion �: In Fig. 2 oneposition of the moving spherical octant ABC with center M is displayed.Fig. 3 shows several positions of the moving triangle together with theellipse-shaped path m of M . The selected positions of ABC � � originatefrom an equal spacing of the path m. In Fig. 3 also the envelope bc of themoving octant is displayed. bc is again a spherical conic; it is located on thecone b� orthogonal to �, i.e. b� is tangent to the planes which are orthogonalto the generators of �.
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Figure 4. The complete path m ofM under � and the path p with the tracing equilateraltriangle P0P1P2During one turn of � the moving triangle ABC returns twice to its initialposition A0B0C0, however rotated under 120� and 240�, respectively. LetP0; P1; P2 be the corresponding positions of any point P of the movingsystem for P 6= M . Then P0P1P2 is again an equilateral triangle withvertices tracing the same spherical path p under � (see Fig. 4).4. Algebraic properties of �Each position �(t) of the moving space obtained under � is uniquely deter-mined either by the corresponding orthogonal matrix C according to (4)



or by the quaternion q(t) = a+ bi+ cj+ dk obeyingT := DC = 0@ a2+ b2� c2� d2 2(bc� ad) 2(bd+ ac)2(bc+ ad) a2� b2+ c2� d2 2(cd� ab)2(bd� ac) 2(cd+ ab) a2� b2� c2+ d2 1A (5)with D := a2+ b2+ c2+ d2 . For each t the quaternion q(t) is unique up toa real factor only. The mapping� : P3! SO3; (a : b : c : d) 7! C = 1D Tis the so-called spherical kinematic mapping.Since the unit points (1; 0; 0); (0; 1; 0); (0; 0; 1) of the moving coordinate sys-tem trace the same curve c in �0, the column vectors t1; t2; t3 of T mustobey the equation G(x) = 0 of the equilateral cone � in (1). This givesF1 := G(t1) = �(a2 + b2 � c2 � d2)2 + 4�(ad+ bc)2 � 4(ac� bd)2 = 0F2 := G(t2) = 4�(ad� bc)2 + �(a2 � b2 + c2 � d2)2 � 4(ab+ cd)2 = 0F3 := G(t3) = 4�(ac+ bd)2 + 4�(ab� cd)2 � (a2 � b2 � c2 + d2)2 = 0: (6)However, the three homogeneous polynomials F1; F2; F3 in the indetermi-nates a, b, c, d are linearly dependent. This results from the representationFk = G(tk) = �t21k + �t22k � t23k with T = �tik�;which implies for the row vectors r1; r2; r3 of TF1 + F2 + F3 = �kr1k2 + �kr2k2 � kr3k2 = D2(�+ � � 1) = 0 : (7)In P3 the set V� of zeros (a :b :c :d) of the homogeneous polynomials F1 andF2 is an algebraic curve of order 16. But V� is reducible for the followingreason: The norm of each column vector of T obeys ktkk2 = D2. Hence,(a : b : c : d) is a zero of the polynomials D and F1 = G(t1) if and onlyif t1 is isotropic, i.e. kt1k = 0. In this case t2 is isotropic too and due tot1 �t2 = 0 proportional to t1, provided t1 6= o. Therefore F1 =D= 0 andt1 6= o imply F2 = 0. A careful analysis proves that V� contains two pairsof skew conjugate complex lines on the empty quadric 
: D = 0.5The remaining algebraic curve V of order 12 is mapped under the sphericalkinematic mapping � onto an algebraic one-parameter motion � which will5We substitute the parameter representationa = 12 (�0�0 + �1�1), b = � i2 (�0�0 � �1�1), c = 12 (�0�1 � �1�0), d = � i2 (�0�1 + �1�0)of 
 in the equations F1 = 0 and F2 = 0 and obtain �20�21P (�0; �1) = 0 and (�20 +�21)2P (�0; �1) = 0, resp., with P (�0; �1) := (1 + �)(�40 + �41)� 2(1 + 2�� �)�20�21.



be called algebraic completion of the motion �. This is a proper extensionof � as the algebraic equations F1 = F2 = 0 do not rule the orientationof the moving coordinate axes. When therefore �(t) is a position occupiedunder �, then � contains also all positions which can be achieved from�(t) under direct displacements which permute the non-oriented coordinateaxes. These 24 displacements form a group isomorphic to the rotationalsymmetries of a cube.Theorem 2. The preimage of the motion � under the spherical kinematicmapping is subset of a non-rational curve V of order 12 in P3.The path of a generic point under the algebraic completion � of � is ofspherical order 24 and simultaneously traced by 24 points. The paths ofpoints with jxj = jyj or jxj = jzj or jyj = jzj are symmetric with respect toO; the spherical order reduces to at most 12.The centerM of the moving equilateral right triangle ABC traces a (three-fold covered) path which obeys the equation of fourth orderm : (k1x20 + k2y20 � k3z20)(x20 + y20 + z20)� (k4x20 + k5y20)2 = 0 ;k1 := (5 + 2�)(1 + 4�);k2 := (5 + 2�)(1 + 4�); k3 := (� � �)2; k4 := 3(1 + �);k5 := 3(1 + �): (8)Proof: The path of a generic point x := (x; y; z)T under � is located ona cone which is the image of the algebraic curve V of order 12 under therational (quadratic) mapping�x : P3! P2; (a : b : c : d) 7! (x0 : y0 : z0) for (x0 y0 z0)T = TxTaccording to (5) and (4). Due to standard results of Algebraic Geometry(see e.g. Semple-Kneebone (1959), chapter VIII) the order of this coneequals 2 � 12� � with � as sum of intersection multiplicities between V andthe set S of points of indeterminacy under �x. This set S in P3 obeyingx0= y0= z0= 0 consists of two skew complex conjugate generators of 
.6For indeterminate (x; y; z) these transcendental lines cannot pass throughany point of intersection between V and 
. Thus we obtain � = 0.In order to verify the equation of the path m ofM , we either use the matrixequation (4). Or we express (x0; y0; z0) in terms of (a; : : : ; d) according to(5) and show in accordance with Hilbert's zero point theorem that a powerof the resulting polynomial is an element of the ideal which de�nes V .In Fig. 3 only one connected componentm of the pathm is displayed whichlooks like an ellipse. Fig. 4 shows two (real) components of the algebraicallycompleted curve m. One is traced under � by the point (x; y; z) = (1; 1; 1),the other simultaneously by (1;�1;�1), (�1; 1;�1) and (�1;�1; 1).6In the notation of footnote 5 these lines obey 2�0�1x+ i(�20+�21)y� (�20 ��21)z = 0.



Under � 6= 12 the homogeneous equation in (8) de�nes an irreducible quarticin P2 without any singularity.7 Therefore this quartic is non-rational whichproves that also V and the motion � are non-rational.5. ConclusionThe following items are left for future research:� Each analytic spherical motion can be extended into the dual sphere,which is a model for the set of oriented lines in the E 3 (see e.g. Stachel(1997)). In this sense the motion � gives rise to a two-parameter spatialmotion with the property that the axes of an orthonormal 3-bar tracethe same quadratic congruence of lines. There is perhaps a connectionwith results given in Wunderlich (1980).� � can even be generalized to a spherical (n�1)(n�2)2 -parameter motion inthe Euclidean n-space where the endpoints of an orthonormal n-frametrace the same spherical quadric.ReferencesBaker, H.F. (1930) Principles of Geometry, Vol. II, 2nd ed., Cambridge University Press.Blaschke, W. (1954) Projektive Geometrie, 3. Au., Verlag Birkh�auser Basel.Coxeter, H.S.M. (1993) The real projective plane, 3rd ed., Springer-Verlag New York.J�uttler, B. (1993) �Uber zwangl�au�ge rationale Bewegungsvorg�ange, Sitzungsber., Abt. II,�osterr. Akad. Wiss., Math.-Naturw. Kl. 202, 117{132.J�uttler, B. and Wagner, M.G. (1996) Computer-Aided Design With Spatial RationalB-Spline Motions, Journal of Mechanical Design 118, 193{201.M�uller, H.R. (1963) Kinematik, Sammlung G�oschen, Bd. 584/584a, Walter de Gruyter& Co., Berlin.R�oschel, O. (1985) Rationale r�aumliche Zwangl�aufe vierter Ordnung, Sitzungsber., Abt. II,�osterr. Akad. Wiss., Math.-Naturw. Kl. 194, 185{202.Segre, C. (1928) Mehrdimensionale R�aume, in Encyklop�adie der math. Wiss. III.2.2A,no. C7, B.G. Teubner, Leipzig, pp. 779-972.Semple, J.G. and Kneebone, G.T. (1959) Algebraic Curves, Oxford University Press.Stachel, H. (1997) Euclidean line geometry and kinematics in the 3-space, in N.K.Art�emiadis and N.K. Stephanidis (eds.), Proceedings of the 4th International Congressof Geometry, Thessaloniki 1996, pp. 380{391.Staude, O. (1915) Fl�achen 2. Ordnung und ihre Systeme und Durchdringungskurven, inEncyklop�adie der math. Wiss., III.2.1, no. C2, B.G. Teubner, Leipzig, pp. 161{256.Wunderlich, W. (1970) Ebene Kinematik, Bibliographisches Institut, Mannheim.Wunderlich, W. (1980) Orthogonale Erzeugendenpolynome auf einschaligen Hyper-boloiden, Monatsh. Math. 89, 163-170.Wunderlich, W. (1984) Kubische Zwangl�aufe, Sitzungsber., Abt. II, �osterr. Akad. Wiss.,Math.-Naturw. Kl. 193, 45{68.7Singular points could only exist on the lines x0y0z0 = 0 because of the symmetry.


