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1. Unfolding and folding

Unfoly
W
There are standard procedures provided for the I .

construction of the unfolding (development,
net) of polyhedra or developable surfaces.

The result is unique, apart from the placement
of the different components, and it shows the
Intrinsic metric of the spatial structure.
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E.g., the unfolding of the Oloid
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Developable surfaces are ruled surfaces with
vanishing Gaussian curvature

July 13: ISTEC 2016, Vienna University of Technology




Oloid:

arc-length parametrization of the
unfolding of the circles:

2v/3 V2 coss  4/2(1 —coss)(1+2coss)
x(s) = —— | arccos —
9 V14 coss (14 coss)
V3 2 11+ 7coss
y(s) = —|In + .
9 1+ coss 1+ coss
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1. Unfolding and folding

Unfo/d

fo Id

The inverse problem, I.e., the determination of

a folded structure from a given unfolding Is 1 B
more complex. In the smooth case we obtain
a continuum of bent poses.

In the polyhedral case the computation leads to
a system of algebraic equations. Also here the
corresponding spatial object needs not be unique.
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1. Unfolding and folding

Only If the polyhedron bounds a convex solid then the result is unique, due to Aleksandr
Danilovich Alexandrov (1941).

In this case, for each vertex the sum of intrinsic angles for all adjacent surfaces is
< 360° (= convex intrinsic metric).

Theorem: [Uniqueness Theorem]
For any convex intrinsic metric there is a unique convex polyhedron.
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1. Unfolding and folding

If convexity I1s not required the unfolding
of a polyhedron needs not define Its
spatial shape uniquely !

ey

Definition 1: A polyhedron is called
globally rigid If its intrinsic metric
defines its spatial form uniquely — up to

movements in space. A flipping (or snapping) polyhedron
admits two sufficiently close realizations

— by applying a slight force.

e.g., a tetrahedron
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1. Unfolding and folding

Definition 2: A polyhedron is called (continuously) flexible if there is a continuous
family of mutually incongruent polyhedra sharing the intrinsic metric. Each member of
this family i1s called a flexion.

Even a regular octahedron is flexible — after being re-assembled. The regular pose on
the left hand side is called locally rigid.
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1. Unfolding and folding

A/

<
NG
<
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A/

Two particular examples
of flexible  octahedra
where two faces are
omitted. Both have an

axial symmetry (types 1
and 2)

Below: Nets of the two
octahedra.




1. Unfolding and folding

/B’
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According to R. Bricard (1897)
there are three types of flexible
octahedra (four-sided double-
pyramids).

The first two have axis or plane of
symmetry. Those of type 3 admit
two flat poses. In each such pose,
the pairs (AA), (B,B’), and
(C,C") of opposite vertices are
associated points of a strophoid S.

A e



1. Unfolding and folding
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According to Bricard’s construc-
tion, all bisectors must pass
through the midpoint N of the
concentric circles.

The two flat poses of a type-3
flexible octahedron, when ABC
remains fixed.

A e



This polyhedron called
“Vierhorn” 1s  locally
rigid, but can flip
between Its spatial
shape and two flat
realizations In  the
planes of symmetry
(W.  Wunderlich, C.
Schwabe).

At the science exposition “Phanomena” 1984 in Zurich this polyhedron was exposed

and falsely stated that this polyhedron is flexible.
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1. Unfolding and folding

the “Vierhorn™ and its unfolding

Wolfram MathWorld: A flexible polyhedron which flexes from one totally flat configuration to another, passing through
intermediate configurations of positive volume.
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A polygonal mesh is a simply connected subset
of a polyhedral surface (sphere-like or with
boundary) consisting of (not necessarily planar)
polygons, edges and vertices in the Euclidean 3-
space.

The edges are either internal when they are
shared by two faces, or they belong to the
boundary of the mesh.

When all polygons are quadrangles, then it is
called a quadrilateral surface.
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2. Flexible quad-meshes

[[]

In modern architecture, most freeform surfaces are designed as polyhedral surfaces —
like the Capital Gate in Abu Dhabi, built by the Austrian company Waagner Biro
(160 m high, 18° inclination)
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2. Flexible quad-meshes

Under which conditions Is this 3 x 3
mesh continuously flexible ?
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2. Flexible quad-meshes

Transmission from f; to f3

via the quadrangle f> Composition of two spherical four-bar

linkages
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2. Flexible quad-meshes

A Kokotsakis mesh iIs continuously flexible
<

the transmission from f; to f3 can in two
ways be decomposed into two spherical
four-bar mechanisms, one via V4 and V5,
the other via V; and V3.

The internal edges can be arranged in two f,
‘horizontal’ (blue) and two ‘vertical’ edge
folds (red).
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2. Flexible quad-meshes

I. Planar-symmetric type (Kokotsakis 1932):
The reflection in the plane of symmetry of \} and V,

maps each horizontal fold onto itself while the two
vertical folds are exchanged.

Il. Translational type:
There is a translation V; — V4 and V, — V5 mapping

the three faces on the right hand side onto the triple
on the left hand side.
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2. Flexible quad-meshes

I1l: Isogonal type (Kokotsakis 1932):

A Kokotsakis mesh is flexible when at each
vertex V; opposite angles are either equal or
complementary, I1.e.,
aj = 5/" i = 5/’ or
aj=mm—06;, v=m—20 and (n=4)
sinap siny;  sin s £ sin7y,

sinfa1 —71)  sin(a2 —72)
_ sinB3E£siny3 SNG4 siny,

" sin(Bs —y3)  sin(Ba — Ya)

A quad mesh where all 3 x 3 complexes are of this type is continuously flexible and
called Voss surface (Kokotsakis, Graf, Sauer)
A s
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These are Voss surfaces:

Nadja Posselt:

Synthese von zwanglaufig beweglichen 9-gliedrigen Vierecksflachen
Diploma thesis, TU Dresden 2010
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2. Flexible quad-meshes

Illa. Generalized isogonal type:

A. Kokotsakis (1932): At all vertices opposite
angles are congruent or complementary.

G. Nawratil (2010): At least at two of the four
pyramids opposite angles are congruent.

IV. Orthogonal type (Graf, Sauer 1931):

Here the horizontal folds are located in parallel (say:
horizontal) planes, the vertical folds in vertical planes
(T-flat).
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2. Flexible quad-meshes

V. Line-symmetric type (H.S. 2009):

A line-reflection maps the pyramid at \j
onto that of V4; another one exchanges the
pyramids at \, and 4.

This includes Kokotsakis' example of a
flexible tessellation.
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2. Flexible quad-meshes

\‘ \ Zﬁﬁ 1) Miura-ori is a Japanese folding
77777777777 technique (1970?)  named after
Prof. Koryo Miura, The University of
Tokyo (military secret in Russia).

It 1s used for solar panels because it
can be unfolded into its rectangular
shape by pulling on one corner only.
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On the other hand it is used as kernel
to stiffen sandwich structures.

g 24 /57

Unfolded miura-ori:
dashs are valley folds,
full lines are mountain folds
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we start  with  two
parallelograms sharing
one edge . ..
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and rotate the right one against
the left one through the angle
20.

The lower sides span a plane €y,
the upper sides a plane €, parallel
E1.
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By translations we generate a zig-zag strip of parallelograms
between the two parallel planes €1 and €, .
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By reflection in €, we generate a second zig-zag strip of
parallelograms sharing the border line in €, with the initial strip

— and we Iterate . ..
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2. Flexible quad-meshes
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There Is a hidden local
symmetry at each
vertex V:

The  parallelograms
Py, P> with angle o
and the elogations
P73, P5 of those with
angle 180° — a form
a pyramid symmetric
with respect to the
fixed planes.
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2. Flexible quad-meshes

A. Kokotsakis, 1932
Athens
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2) Any arbitrary plane quadrangle is
a tile for a reqular tessellation of the
plane. It I1s obtained from the Initial
quadrangle

e by Iiterated 180°-rotations about the
midpoints of the sides — or

e by Iterated translations of centrally
symmetric hexagon.

For a convex f; this polyhedral surface
Is continuously flexible.

yous



At each flexion all vertices are located on a right circular cylinder.
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2. Flexible quad-meshes
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Different flexions of a 9 x6
tessellation mesh (dashes
indicate valley folds).

Under which conditions s
there a flexion where the
right border zig-zag fits
exactly to the left border —
apart from a vertical shift ?

yous



2. Flexible quad-meshes

Theorem:
(=i
I r2="(f11)
for i1+7=0 (mod 2)
I#r#m(fﬂ)
| for i+ =1 (mod 2)

(r=pxopiand I = psop)

This scheme of a 7 x 7 tesselation mesh indicates
which product of helical motions I, r and 180°-
rotations ps maps f1; onto f;;.
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2. Flexible quad-meshes

Coaxial helical motions commute
:

Theorem:

A flexion of a m x n tesselation
mesh closes with a vertical shift
of k faces <—

there exist a, b € Z with
2r°=d,.,, k=—a—b.
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2. Flexible quad-meshes

Closing flexion of a 7 x 9 tesselation mesh with /=°r = db,, k = 5.

How obtainable ?

e numerically:
minimize a distance, or

e start with two coaxial
helical motions  r, |
satisfying 17r? = do,.
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The analogon of a Schwarz boot with trapezoids; a closing flexion of a 17 X 16
tesselation mesh with /719r° = d,. and k = 4.
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Theorem:
Each closing flexion of a m x n tesselation mesh is infinitesimally rigid.
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3. Curved folding, Example 1

A common way of producing small boxes is to push up appropriate planar cardbord
forms ®y with prepared creases. Below the case of creases along circular arcs ¢.

planar version with circular creases corresponding box with planar creases
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3. Curved folding, Example 1

As proved by W. Wunderlich (1958), the spatial creases ¢ are again planar and
known as meridians of surfaces of revolution with constant Gaussian curvature.

planar version with circular creases corresponding box with planar creases
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3. Curved folding, Example 1

On surfaces of revolution the meridians and
parallel circles are the principal curvature lines.
Therefore, the signed principal curvatures are

y COS O
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The Gaussian curvature is defined
as K = Ki1K»o . Hence,

K = const. <—
y”—'—Ky:O, X/: 1_y/2

provided that cosa # 0.
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The general solution of y”" + Ky = 0
with constant K # 0 Is

for K >0
y = acossvV K + bsinsvVK,
for K <0:
y = acosh sv/—K + bsinhsv—K
with constants a, b € R, and

X=fx/1—y’2d5.

we can restrict to six cases, up to
similarities (Gauls, Minding).

Pseudosphere (tractroid)
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3. Curved folding, Example 1

4 0y 6. y
5.
tractrix M
X y X
— | | -
b=0.3 /\\ a=20.8
N
M, f\/B_F

There are six types of meridians to distinguish at the surfaces of revolution with
constant Gaussian curvature K # 0.
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3. Curved folding, Example 1

Let ¢ satisfy yj+ Ky = 0 and bound
a cylindrical patch &y with generators
orthogonal to the x-axis ap.

Theorem: [f at a cylindrically bent
pose ® of @y the boundary c lies in
a plane €, then It satisfies the same
differential equation as ¢.

Proof:  yo(s) = y(s)cosB  with
B < m/2 being the (constant) angle
of inclination of the cylinder.

The axis of ¢ is the meet of € and the plane of the orthogonal section a, which is the
bent counterpart of the original axis ag of ¢.
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3. Curved folding, Example 1

Theorem:

Let ®y be a planar ‘ruled surface’ with a transversal
curve (crease) ¢y, which separates ®g into two patches

(Dlo and (Dgo.

Suppose the generators of the ruling remain straight at
the bent pose ®;, &, with a curved edge ¢ between.
Then ¢ must be a planar curve.

If all generators of ®; and &, are extended to infinity,
we obtain two torses, which are symmetric with respect
to the plane of c.

E.g., take a cone of revolution with a parabolic section ¢ and reflect the part opposite
to the apex in the plane of c. In Origami this is called reflection operation.
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3. Curved folding, Example 1

Sketch of the Proof:

Let k(s) and 7(s) denote the curvature and torsion of c. In terms of the angle y1(s)
between the osculating plane of ¢ and the tangent plane of the torse ®;, the geodesic
curvature of c w.r.t. ®q Is

Kg = K COSY1.

The geodesic curvature K, must be the same w.r.t. ®, = 7y = —71.

The angle o between the tangent of ¢ and the generator of ®; satisfies
cosa :sina = (T —;) 1 —KsinY.

The angle o must be the same w.rt. &, = (7 —7}) = —(7+7}), hence 7 =0.
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4. Curved folding, Example 2

Unfolding and corresponding spatial form (photos: G. Glaeser)

The spatial form @ is obtained by gluing together the semicircles with the straight
segments. How to model the resulting convex body 7
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4. Curved folding, Example 2

o=

.

Unfolding and corresponding spatial form (photos: G. Glaeser)
The crucial point is here that the ruling i1s unknown.

M. Kilian, S. Flory, Z. Chen, N.J. Mitra, A. Sheffer, H. Pottmann: Curved Folding.
ACM Trans. Graphics 27/3 (2008), Proc. SIGGRAPH 2008.
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4. Curved folding, Example 2

Ca
A physical model shows:

e [he spatial body with its developable boundary &
Is convex and uniquely defined.

July 13: ISTEC 2016, Vienna University of Technology

e [ he helix-like curve ¢ = ¢c; U
C> IS a proper edge of @; the
resulting solid 1s the convex hull
of c.

e [he semicircular disks are
bent to cones with apices A
and C. Hence, ® is a C!-
compound of two cones and a
torse between.

e [he body has an axis a of
symmetry which connects the
midpoint M with the remaining
transition point B = D on c.
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4. Curved folding, Example 2

!/ /
BO_DO "f_lo

Co

Consequences:

e Because of the straight segments of c¢yg, the
developable surface on the left hand side of ¢
belongs to the rectifying torse of ¢.
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e At A and C the surface ®
can be approximated by a right
cone with apex angle 60°.

e [he tangent t4 to ¢; at A
IS a generator, the osculating
plane of ¢; a tangent plane of
this cone; the rectifying plane
passes through the cone'’s axis.

e \When gy meets both straight
sides of ¢y, then g meets ¢
and ¢ at points with parallel
tangents — coinciding

tangent indicatrices.
Aé 50/57



4. Curved folding, Example 2

3 5
/ /

e [he tangent at the point E5, € ¢ of transition
between the cone with apex A and the torse must
be parallel to t,.
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e [ he tangent at the analogue
point E1 € ¢; Is parallel to the
final tangent t- of .

e [he subcurves AE; C ¢
and E,C C ¢ have conciding
tangent indicatrices.

At a first approximation the
cone with apex A Is specified as
right cone with apex angle 60°;
c1 1S a geodesic circle on this
cone.
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4. Curved folding, Example 2

/!

, B

S "
T2

C/// 0
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Approximation 1:
c1 Is an algebraic curve.

ty Is parallel to the tangent at
E> € . Analogously, tc is parallel
to the tangent at £; € ¢;. This
defines the axis a of symmetry.

We notice a contradiction since
the osculating plane of ¢; at B Is
not orthogonal to BC.
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4. Curved folding, Example 2

te, = tA

Left: Tangent indicatrices of ¢; and ¢, for the first
approximation; no coinciding subcurves!
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Approximation 2 is defi-
ned by alined side views
of the tangent Indicatrices
(right) —

e the subcurve AE; C ¢ is
a curve of constant slope.

e the central torse Is a
cylinder,

e a translation maps AE;
onto the subcurve E>C C
Co.
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Approximation 2:

The product of the translation A — E»
and the half-rotation about a maps the
subcurve AE; onto itself, but in reverse
order.

Therefore this portion AE; has an axis
a; of symmetry passing through the
midpoint F.
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Approximation 2 shows an excellent
accordance with the physical model.

... but there remains a contradiction.

g 55/57
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4. Curved folding, Example 2

A

Due to the symmetry w.r.t. a;, the midpoint N of AE; lies on a;. The distances
AoFio and AgEqp are preserved, the triangle ANF; Is congruent to its counterpart
AoNoFio in the unfolding. But NF; is not (exactly) orthogonal to the tangent of ¢;
at Fl.
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Thank you for your attention!
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