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Abstract. Let ABC be a triangle with side-lengths a, b, and c. For a point P in
its plane, let APa, BPb, and CPc be the cevians through P . It was proved in [1]
that the centroid, the Gergonne point, and the Nagel point are the only centers for
which (the lengths of) BPa, CPb, and APc are linear forms in a, b, and c, i.e., for
which [APa BPb CPc] = [a b c]L for some matrix L. In this note, we investigate
the locus of those centers for which BPa, CPb, and APc are quasi-linear in a, b,
and c in the sense that they satisfy [APa BPb CPc]M = [a b c]L for some matrices
L and M . We also see that the analogous problem of finding those centers for
which the angles ∠BAPa, ∠CBPb, and ∠ACPc are quasi-linear in the angles A,
B, and C leads to what is known as the Balaton curve.
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1. Introduction

Let ABC be a non-degenerate triangle with side-lengths a, b, and c. For a point P in the
plane of ABC, we let APa, BPb, and CPc be the cevians of ABC through P , and we define
the intercepts x, y, and z of P by

x = BPa, y = CPb, z = APc (1)

(see Fig. 1). Here, BPa, CPb and APc stand for directed lengths, where BPa is positive or
negative according as Pa and C lie on the same side or on opposite sides of B, and so on. To
avoid infinite intercepts, we assume that P does not lie on any of the three exceptional lines
passing through the vertices of ABC and parallel to the opposite sides.
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It is proved in [1, Theorem 1] that the only centers P for which x, y, and z are linear
forms in a, b, and c are the centroid G, the Nagel point N , and the Gergonne point N ′. This
scarcity of centers defined by such linearity conditions is a result of the heavy restrictions
that the cevians APa, BPb, and CPc are concurrent and that P is a center function, i.e., it
assigns to each triangle a point in a manner which is symmetric with respect to permutations
of the vertices.

Letting
x′ = a − x, y′ = b − y, z′ = c − z, (2)

we see that the condition for the concurrence of the cevians is given by Ceva’s theorem as

xyz = x′y′z′ = (a − x)(b − y)(c − z). (3)

The restriction that P is a center function says that if x = f(a, b, c), then x′ = f(a, c, b), and
that y and z (respectively, y′ and z′) are obtained from x (respectively, x′) by iterating the
cyclic permutation (a b c).

PSfrag replacements

A

B C

P

Pa

Pb

Pc

x

y

z

X

Y
Z

Figure 1: The triangle ABC with cevians and intercepts x, y, z

The linearity of x, y, and z in a, b, and c can be expressed as

[x y z] = [a b c] L, (4)

where L is a 3× 3 real matrix. One gets more centers by weakening this to take the form

[x y z] M = [a b c] L, (5)

where M is not necessarily invertible. In view of (3), this can still be expected to result in
unique solutions. Centers arising in this way are the subject of study in this note.

2. Triangle centers with quasi-linear intercepts

We start by proving that the matrix M can be assumed to be either invertible, in which case
(5) is reduced to the linear case (4) already studied, or to the circulant matrix whose first
column is [1 − 1 0]t, where t denotes the transpose. In fact, if (x, y, z) satisfies an equation
ξx + ηy + ζz = f(a, b, c), then it must also satisfy ζx + ξy + ηz = f(b, c, a). It follows that if
the matrix M in (5) is to define a center, its column space must be invariant under the cycle
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(ξ, η, ζ) 7→ (ζ, ξ, η). It is easy to see that the only such invariant subspaces in the ξηζ-space
R

3 are the ξηζ-space itself, the plane ξ + η + ζ = 0 and the line ξ = η = ζ. Thus M can be
reduced to one of the following matrices:





1 0 0
0 1 0
0 0 1



 ,





1 0 −1
−1 1 0

0 −1 1



 ,





1 1 1
1 1 1
1 1 1



 .

The first case is the one considered in (4) above and covered in [1, Theorem 1]. The last case
results in infinitely many solutions that satisfy the cevian condition. Thus we may assume
that M is the circulant matrix whose first column is [1,−1, 0]t. The corresponding center
function is thus defined by the requirement that x− y, and consequently y − z and z − x, are
linear forms in a, b, and c (together of course with the cevian condition).

A center function needs not be defined on the set T of all triangles, where T is identified
with

{(a, b, c) ∈ R
3 : 0 < a < b + c, 0 < b < c + a, 0 < c < a + b}.

However, it will be assumed that every center function is defined on a subset U of T having a
non-empty interior. Since the interior of the zero set of a non-zero polynomial in any number
of variables must be empty, it follows that a non-zero polynomial cannot vanish on U if U

has a non-empty interior. This fact will be freely used.

Theorem 1 Let Z be a center function and suppose that the intercepts x, y, and z of
Z(ABC) are such that x− y is a linear form in a, b, and c. Then there exists a unique t ∈ R

such that 



x − y
y − z
z − x



 =





t+1

2

t−1

2
−t

−t t+1

2

t−1

2
t−1

2
−t t+1

2









a
b
c



 . (6)

Conversely, for every t ∈ R there is a center function St on some Ut ⊆ T such that the
intercepts x, y, and z of St(ABC) satisfy (6). The largest such Ut is defined by

(a, b, c) ∈ Ut ⇐⇒ ab + bc + ca ≥ (a2 + b2 + c2 − ab − bc − ca)t2.

Consequently, St is defined on all triangles of T if and only if −1 ≤ t ≤ 1.

Proof: Let Z be a center function and suppose that the intercepts x, y, and z of Z(ABC)
satisfy the equation

x − y = ξa + ηb + ζc (7)

for some real numbers ξ, η, and ζ and for all triangles ABC in some U. Adding (7) to its
iterates y − z = ζa + ξb + ηc and z − x = ηa + ζb + ξc, we see that

ξ + η + ζ = 0. (8)

The permutation (A B) corresponds to the substitution

(x, y, z, a, b, c) 7→ (y′, x′, z′, b, a, c) = (b − y, a − x, c − z, b, a, c).

Applying this to (7), we obtain (b− y)− (a− x) = ξb + ηa + ζc and hence x− y = (η + 1)a +
(ξ − 1)b + ζc. From this and (7), we get ξ − η = 1. Using (8), we see that ξ = (1 − ζ)/2 and
η = (−1 − ζ)/2. We obtain (6) by setting ζ = −t.
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Conversely, suppose t ∈ R is given, and let ABC be a triangle in T with side-lengths a,
b, and c. Let

k = a2 + b2 + c2 − ab − bc − ca, p = ab + bc + ca, d = (a − b)(b − c)(c − a). (9)

First, we prove that if p − kt2 ≥ 0, then there exists a unique point V whose intercepts
x, y, and z satisfy (6) and its iterates

y − z =
t + 1

2
b +

t − 1

2
c − ta , z − x =

t + 1

2
c +

t − 1

2
a − tb . (10)

Rewrite (6) and (10) as

2x − 2y = [t(b − c) + a] − [t(c − a) + b], (11)

2y − 2z = [t(c − a) + b] − [t(a − b) + c], (12)

2z − 2x = [t(a − b) + c] − [t(b − c) + a], (13)

and let u be defined by
2x = t(b − c) + a + u, (14)

where u is an indeterminate whose value is to be computed. Then similar expressions for 2y,
2z, 2x′, 2y′, and 2z′ are found using (11), (12), and (13). It now remains to show that there
is a unique u for which xyz − x′y′z′ vanishes. Denoting 4(xyz − x′y′z′) by g(u), we see that

2g(u) = (t(b − c) + a + u)(t(c − a) + b + u)(t(a − b) + c + u)
− (−t(b − c) + a − u)(−t(c − a) + b − u)(−t(a − b) + c − u)

and therefore
g(u) = u3 + (p − kt2)u + (t3 − t)d . (15)

Then g′(u) = 3u2 + p − kt2 ≥ 0 . Therefore g(u) is increasing and thus it has a unique zero,
as desired.

Next, we prove that if p − kt2 < 0, then there does not exist a unique point V whose
intercepts x, y, z satisfy (6) and (10). Since a center function that is defined for ABC is
expected to be defined for ACB, and since the quantity d given in (9) changes sign when
ABC is replaced by ACB, we may assume that

t(t2 − 1)d ≤ 0. (16)

Following the steps in the previous case, it is enough to show that the cubic polynomial g(u)
given in (15) has more than one zero. Equivalently, it is enough to prove that g(u0) ≤ 0,
where u0 =

√

(kt2 − p)/3 is the larger zero of g′(u). But

g(u0) = u3

0 − (kt2 − p)u0 + t(t2 − 1)d =
−2

3

(
kt2 − p

)3/2
+ t(t2 − 1)d < 0,

by (16), as desired.
It remains to prove the last statement. If t2 ≤ 1, then

p − kt2 ≥ p − k (because 2k = (a − b)2 + (b − c)2 + (c − a)2 ≥ 0)
= 2(ab + bc + ca) − (a2 + b2 + c2)
= (a + b − c)(a + c − b) + (b + c − a)(b + a − c) + (c + a − b)(c + b − a)
≥ 0 (by the triangle inequality).
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Conversely, if t2 > 1, then there exists (a, b, c) ∈ T for which p − kt2 < 0, or equivalently
p/k < t2. In fact, p/k = 1 for the degenerate triple (1, 1, 0) and p/k = ∞ for (1, 1, 1) and
therefore p/k = t2 for some non-degenerate (a, b, c) of the form a = b = 1, c > 0. This
completes the proof.

In view of Theorem 1 above, one may, at times, restrict attention to the case −1 ≤ t ≤ 1.
The next theorem is essentially a restatement of Theorem 1 under this restriction.

Theorem 2 Let Z be a center function on T and suppose that the intercepts x, y, and z
of Z(ABC) are such that x − y is a linear form in a, b, and c. Then there exists a unique
t ∈ [−1, 1] such that (6) holds.

Conversely, for every t ∈ [−1, 1] there is a center function Zt on T such that the intercepts
x, y, and z of Zt(ABC) satisfy (6). Furthermore, Zt(ABC) lies inside ABC for all triangles.

Proof: We only need prove the last statement. Clearly, Zt(ABC) lies inside ABC if and
only if 0 < x < a. In view of (14), this is equivalent to the requirement that −a − t(b − c) <
u < a− t(b− c), where u is the unique zero of the polynomial g given in (15). Now this would
follow if we prove that g(−a − t(b − c)) and g(a − t(b − c)) have different signs. But

g(−a − t(b − c)) = aL1L2 and g(a − t(b − c)) = −aL3L4,

where
L1 = t(a + b − 2c) + (a + b), L2 = t(a + c − 2b) − (a + c),
L3 = t(a + b − 2c) − (a + b), L4 = t(a + c − 2b) + (a + c).

Calculating each of the linear functions L1, L2, L3, L4 at t = ±1, we conclude that

L1 > 0, L2 < 0, L3 < 0, L4 > 0

for all t in [−1, 1]. This completes the proof.

Note 1: If St denotes the center function defined by (6), then it is easy to check that S0,
S1 and S−1 are nothing but the centroid G, the Nagel center N and the Gergonne center
N ′, respectively (Fig. 2). Before studying the locus of St(ABC) as t ranges in [−1, 1], let us
mention two other centers that naturally arise in connection with (6). Note first that (6) can
be rewritten in the equivalent forms

x′ + y =
1 − t

2
(a + b) + tc , (17)

x + y′ =
1 + t

2
(a + b) − tc . (18)

The centers that satisfy

x′ + y = y′ + z = z′ + x =
a + b + c

3
, x + y′ = y + z′ = z + x′ =

a + b + c

3

correspond to t = 1/3 and t = −1/3, respectively. With reference to Fig. 1, they may be
duly called the (first and second) perimeter trisecting centers (or perimeter trisectors). The
first one, S1/3, appears as Y9 in [6, page 182] and as X369 in [7, page 267], where it is called
the trisected perimeter point. The second one, S−1/3, does not seem to appear in the existing
literature.



20 S. Abu-Saymeh, M. Hajja, H. Stachel: Another Cubic Associated with a Triangle

kl
m

PSfrag replacements

A B

C

C

C

S0 =G

S1 =N

Na

Nb

Nc

N ′=S−1

S1/3
S−1/3

Figure 2: The red curve { St | − 1 ≤ t ≤ 1} terminated by the Nagel point N
and the Gergonne point N ′ together with its algebraic closure, the cubic C

3. The locus of centers St and its algebraic closure

Theorems 3 and 4 give the trilinear equation of St as t ranges in [−1, 1] and the trilinear
coordinates of S1/3 and S−1/3. Note 2 compares the result with that of Yff as recorded in
[7, page 267].

Theorem 3 For t ∈ [−1, 1], let St be the center defined by any of (6), (17), (18), or equiva-
lently by 2x = t(b − c) + a + u , where u is the solution of (15). Let the trilinear coordinates
of St be denoted by (α, β, γ). Then the locus of St as t ranges in [−1, 1] is a subset of the
cubic curve C given by

(1−2 cos A)α(b2β2−c2γ2)+(1−2 cos B)β(c2γ2−a2α2)+(1−2 cos C)γ(a2α2−b2β2) = 0. (19)

In the irreducible case C is the algebraic closure of { St | − 1 ≤ t ≤ 1}.

Proof: The barycentric coordinates (xa : xb : xc) and the trilinear coordinates (α : β : γ) of
points in the plane of ABC are related by

(xa : xb : xc) = (aα : bβ : cγ) and
xc

xb

=
x

x′
etc. (20)
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We conclude, e.g.,
(xa : xb : xc) = (yz′ : yz : y′z′). (21)

After substituting (14) and the analogous expressions for x′, y, y′, z, z′, we obtain a rational
map (t : u : 1) 7→ (xa : xb : xc) with

xa = (t(c − a) + b + u) (t(b − a) + c − u) ,
xb = (t(c − a) + b + u) (t(a − b) + c + u) ,
xc = (t(a − c) + b − u) (t(b − a) + c − u) .

(22)

This is birational, because there is a rational inverse obeying

t =
c(xb − xa)(xc + xa) + b(xb + xa)(xc − xa)

(2a − b − c)(xb + xa)(xc + xa)
,

u =
b(b − a)(xb + xa)(xc − xa) − c(c − a)(xb − xa)(xc + xa)

(2a − b − c)(xb + xa)(xc + xa)
.

(23)

We substitute these equations in (15) thus applying the birational map to the cubic curve
g(u) = 0. After dividing by 4bc(2a− b− c)2xa(xc +xa)(xb +xa) we obtain for the image curve
C the barycentric equation

C : ka xa(x
2

b − x2

c) + kb xb(x
2

c − x2

a) + kc xc(x
2

a − x2

b) = 0 (24)

with coefficients

ka = bc − b2 − c2 + a2 = bc(1 − 2 cos A), kb = ac − a2 − c2 + b2 = ac(1 − 2 cos B),
kc = ab − a2 − b2 + c2 = ab(1 − 2 cos C).

(25)

This implies the trilinear equation (19).

Note 2: In [7, Article 8.40, page 240], a cubic whose trilinear equation is of a form

xα(β2 − γ2) + yβ(γ2 − α2) + zγ(α2 − β2) = 0

— similar to (19) — is denoted by Z(P ), where P is the point with trilinear coordinates
x : y : z. These cubics are studied in detail in [8] and [2], and many examples of them have
appeared in the literature.

In the sequel we list some properties of the cubic C obeying the barycentric equation (24):

1) C always passes through the points with barycentric coordinates Ag = (−1 : 1 : 1),
Bg = (1 : −1 : 1), Cg = (1 : 1 : −1) which beside the centroid G = (1 : 1 : 1) are marked
in Figs. 3–5 and connected by dashed lines. In these figures the red portion of C around the
centroid G is the locus of St for −1 < t < 1 which is addressed in Theorem 2.

2) The cubic C is preserved under the mapping which exchanges the intercepts (x, x′), (y, y′) as
well as (z, z′). This is the well-known quadratic birational transformation of isotomic points,
in barycentric coordinates

P = (xa : xb : xc) 7→ P ′ = (xbxc : xaxc : xaxb) = (1/xa : 1/xb : 1/xc).

By (23) this is equivalent to changing the signs of t and u .
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3) The barycentric equation (24) of the cubic can also be written in the form

det





ka kb kc

xa xb xc

xbxc xaxc xaxb



 = 0.

Hence, C is the algebraic closure of the set of points P which are aligned with their isotomic
counterparts P ′ and the fixed point K with barycentric coordinates (ka : kb : kc) (Fig. 3).
This implies:

• The lines connecting K with the vertices A, B, C pass also through the remaining points
of intersection between C and the sides of the given triangle.

• The controid G and the points Ag, Bg and Cg remain fixed under the isotomic trans-
formation. Therefore the tangent lines of C at these points pass through K.

• The isotomic transform of K is the point K ′ = (kbkc : kakc : kakb). The tangent line at
K passes through the corresponding K ′.

• Point K is aligned with the Nagel point N and the Gergonne point N ′ (Fig. 3)1 as well
as with the centers S1/3 and S−1/3 (Fig. 2).

4) In the generic case the cubic C is irrational, i.e., it has no singularity. However, it is
reducible in the following cases:

1Note that there is a pencil of cubics passing through the nine points A, B, C, G, Ag, Bg, Cg, N , and N ′.
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• Under a + b = 2c it splits into a line and an ellipse (see Fig. 4). Then the coefficients
ka, kb, kc in the barycentric equation obey ka + kb = 0, and the line xa + xb = 0 is a
component of C. The same effect shows up under the permuted conditions b + c = 2a
or c + a = 2b. If in these cases the quadratic component of C is irreducible, then it is
the algebraic closure of { St | − 1 ≤ t ≤ 1}.

• For an isosceles triangle ABC, e.g., with a = b (see Fig. 5), two of the coefficients
become equal. Then the cubic consists of the axis of symmetry and an ellipse. All
centers St are located on the axis.

• For an equilateral triangle ABC the cubic splits into the three sides. The points St

coincide with the center G.

Note 3: Triangles ABC with b = c or a = (b+c)/2 were called side-balanced or A-side-balanced
in [4]. Clearly, a = (b + c)/2 is equivalent to sin A = (sin B + sin C)/2 and thus side-balanced
means sine-balanced. The family of such triangles appeared in [4] in the following context:
The Nagel point N of ABC has the circumcentral property NB = NC iff ABC is side-
balanced. This is equivalent to the following variation on Steiner-Lehmus theme [5]: If BNb

and CNc are the cevians through the Nagel point N of ABC, then NNb = NNc iff ABC is
side-balanced.
The similar family of cosine-balanced triangles appeared in [4] in the form: The Nagel point
N of ABC has the Fermat-Torricelli property ∠AFB = ∠AFC iff ABC is cosine-balanced.
The family of angle-balanced triangles (i.e., triangles in which B = C or A = (B + C)/2 or
equivalently A = 60◦) pops up very frequently in the literature.

5) The tangent lines of the cubic C at the vertices A, B, and C are given by the coefficients
of x2

a, x2
b , and x2

c in the polynomial on the left hand side of (24). Hence they obey

kcxc − kbxb = 0, kaxa − kcxc = 0, kbxb − kaxa = 0,

respectively. These three lines meet at point K ′.

6) Thus we know the quadruples of tangent lines passing through K and those through K ′.
If put into a particular order, their cross ratios are equal, and this is a projective invariant of
the cubic C. Computation gives

δ =
k2

c − k2
a

k2
c − k2

b

=
b(c − a)(2a + 2c − b)(2b − a − c)

a(c − b)(2b + 2c − a)(2a − b − c)
(26)

apart from permutations of (a, b, c). As long as neither the numerator nor the denominator
vanishes, the cubic C is irreducible.
We summarize:

Theorem 4 The cubic C (24), which in the irreducible case is the algebraic closure of the
set { St | − 1 ≤ t ≤ 1}, has the following properties.

1. C is reducible for equilateral or isosceles triangles ABC or under one of the conditions
a + b = 2c, b + c = 2a or c + a = 2b. Otherwise it is irrational with the characteristic
cross ratio (26).

2. C is the algebraic closure of points P which are collinear with their isotomic transform
P ′ and with the fixed point K with barycentric coordinates (ka : kb : kc) by (25).
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3. C passes through the vertices A,B,C, through the centroid G and the points Ag, Bg, Cg

with barycentric coordinates (−1 : 1 : 1), . . . , through the Nagel point N and the
Gergonne point N ′, and through K = (ka : kb : kc) and its isotomic transform K ′. The
tangent lines of C at G, Ag, Bg, and Cg have the point K in common. The tangent lines
at A, B, C, and K meet at K ′.

We conclude with the coordinates of the particular points S±1/3 :

Theorem 5 The trilinear coordinates α, β, γ of the first perimeter trisecting center S1/3 are
given by

γ : β = c(c − b + 3a − U) : b(b − c + 3a + U),

where U is the unique real zero of

G(U) = U 3 + (9p − k)U − 8d,

and where k, p, and d are as given in (9).
The trilinear coordinates α, β, γ of the second perimeter trisecting center S−1/3 are given by

γ : β = b(c − b + 3a + W ) : c(b − c + 3a − W ),

where W is the unique real zero of

H(W ) = W 3 + (9p − k)W + 8d.

Proof: The first statement follows by specifying t = 1/3 in (20) and (22) and letting U = 3u.
Similarly for the second statement.

Note 4: The trilinear coordinates of the first perimeter trisecting center X369 = S1/3 are
given in [7, page 267] and [9] by the unsymmetric form

α : β : γ = bc(v − c + a)(v − a + b) : ca(c + 2a − v)(a + 2b − v) : ab(v − c + a)(a + 2b − v),

where v is the unique real zero of

2v3 − 3(a + b + c)v2 + (a2 + b2 + c2 + 8ab + 8bc + 8ca)v
−(b2c + c2a + a2b + 5bc2 + 5ca2 + 5ab2 + 9abc).

Note 5: Considering the angle analogue of the above situation, and referring to Fig. 1, we
define the angles X, Y , and Z associated with P by

X = ∠BAV, Y = ∠CBV, Z = ∠ACV

and we ask about those centers for which X, Y , and Z are linear or quasi-linear in the angles
A, B, and C of triangle ABC. Here again, there are only three centers for which X, Y , and
Z are linear in A, B, and C, namely, the incenter, the orthocenter, and the circumcenter;
see [1, Theorem 2]. As for the quasi-linearity condition [X Y Z]M = [A B C]L, it is again
equivalent to the requirement that X − Y (and consequently Y − Z and Z − X) is linear in
A, B, and C. This in turn is clearly equivalent to the requirement that the central angles
∠BPC, ∠CPA, and ∠APB are linear in A, B, and C. This follows from the observation
∠BPC = A + Z + (B − Y ). Thus the centers for which X − Y is linear in A, B, and C
are those centers for which the angles ∠BPC, ∠CPA, and ∠APB are linear forms in A, B,
and C. These centers are the subject of study in [3], and their locus is what was called the
Balaton curve.
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