Another Cubic Associated with a Triangle

Sadi Abu-Saymeh ${ }^{1}$, Mowaffaq Hajja ${ }^{1}$, Hellmuth Stachel ${ }^{2}$
${ }^{1}$ Department of Mathematics, Yarmouk University, Irbid, Jordan* email: \{sade, mhajja\}@yu.edu.jo, mowhajja@yahoo.com
${ }^{2}$ Institute of Discrete Mathematics and Geometry, Vienna University of Technology Wiedner Hauptstr. 8-10/104, A 1230 Vienna, Austria
email: stachel@dmg.tuwien.ac.at

Abstract

Let $A B C$ be a triangle with side-lengths a, b, and c. For a point P in its plane, let $A P_{a}, B P_{b}$, and $C P_{c}$ be the cevians through P. It was proved in [1] that the centroid, the Gergonne point, and the Nagel point are the only centers for which (the lengths of) $B P_{a}, C P_{b}$, and $A P_{c}$ are linear forms in a, b, and c, i.e., for which $\left[\begin{array}{ll}A P_{a} B P_{b} C P_{c}\end{array}\right]=\left[\begin{array}{lll}a & b & c\end{array}\right]$ for some matrix L. In this note, we investigate the locus of those centers for which $B P_{a}, C P_{b}$, and $A P_{c}$ are quasi-linear in a, b, and c in the sense that they satisfy $\left[A P_{a} B P_{b} C P_{c}\right] M=\left[\begin{array}{ll}a b c\end{array}\right] L$ for some matrices L and M. We also see that the analogous problem of finding those centers for which the angles $\angle B A P_{a}, \angle C B P_{b}$, and $\angle A C P_{c}$ are quasi-linear in the angles A, B, and C leads to what is known as the Balaton curve. Key Words: triangle geometry, cevians, Nagel point, Gergonne point, irreducible cubic, Balaton curve, perimeter trisecting points, side-balanced triangle MSC: 51M04, 51N35

1. Introduction

Let $A B C$ be a non-degenerate triangle with side-lengths a, b, and c. For a point P in the plane of $A B C$, we let $A P_{a}, B P_{b}$, and $C P_{c}$ be the cevians of $A B C$ through P, and we define the intercepts x, y, and z of P by

$$
\begin{equation*}
x=B P_{a}, \quad y=C P_{b}, \quad z=A P_{c} \tag{1}
\end{equation*}
$$

(see Fig. 1). Here, $B P_{a}, C P_{b}$ and $A P_{c}$ stand for directed lengths, where $B P_{a}$ is positive or negative according as P_{a} and C lie on the same side or on opposite sides of B, and so on. To avoid infinite intercepts, we assume that P does not lie on any of the three exceptional lines passing through the vertices of $A B C$ and parallel to the opposite sides.

[^0]It is proved in [1, Theorem 1] that the only centers P for which x, y, and z are linear forms in a, b, and c are the centroid G, the Nagel point N, and the Gergonne point N^{\prime}. This scarcity of centers defined by such linearity conditions is a result of the heavy restrictions that the cevians $A P_{a}, B P_{b}$, and $C P_{c}$ are concurrent and that P is a center function, i.e., it assigns to each triangle a point in a manner which is symmetric with respect to permutations of the vertices.

Letting

$$
\begin{equation*}
x^{\prime}=a-x, \quad y^{\prime}=b-y, \quad z^{\prime}=c-z, \tag{2}
\end{equation*}
$$

we see that the condition for the concurrence of the cevians is given by Ceva's theorem as

$$
\begin{equation*}
x y z=x^{\prime} y^{\prime} z^{\prime}=(a-x)(b-y)(c-z) . \tag{3}
\end{equation*}
$$

The restriction that P is a center function says that if $x=f(a, b, c)$, then $x^{\prime}=f(a, c, b)$, and that y and z (respectively, y^{\prime} and z^{\prime}) are obtained from x (respectively, x^{\prime}) by iterating the cyclic permutation ($a b c$).

Figure 1: The triangle $A B C$ with cevians and intercepts x, y, z
The linearity of x, y, and z in a, b, and c can be expressed as

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \tag{4}
\end{array}\right] L
$$

where L is a 3×3 real matrix. One gets more centers by weakening this to take the form

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right] M=\left[\begin{array}{lll}
a & b & c \tag{5}
\end{array}\right] L
$$

where M is not necessarily invertible. In view of (3), this can still be expected to result in unique solutions. Centers arising in this way are the subject of study in this note.

2. Triangle centers with quasi-linear intercepts

We start by proving that the matrix M can be assumed to be either invertible, in which case (5) is reduced to the linear case (4) already studied, or to the circulant matrix whose first column is $[1-10]^{t}$, where ${ }^{t}$ denotes the transpose. In fact, if (x, y, z) satisfies an equation $\xi x+\eta y+\zeta z=f(a, b, c)$, then it must also satisfy $\zeta x+\xi y+\eta z=f(b, c, a)$. It follows that if the matrix M in (5) is to define a center, its column space must be invariant under the cycle
$(\xi, \eta, \zeta) \mapsto(\zeta, \xi, \eta)$. It is easy to see that the only such invariant subspaces in the $\xi \eta \zeta$-space \mathbb{R}^{3} are the $\xi \eta \zeta$-space itself, the plane $\xi+\eta+\zeta=0$ and the line $\xi=\eta=\zeta$. Thus M can be reduced to one of the following matrices:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .
$$

The first case is the one considered in (4) above and covered in [1, Theorem 1]. The last case results in infinitely many solutions that satisfy the cevian condition. Thus we may assume that M is the circulant matrix whose first column is $[1,-1,0]^{t}$. The corresponding center function is thus defined by the requirement that $x-y$, and consequently $y-z$ and $z-x$, are linear forms in a, b, and c (together of course with the cevian condition).

A center function needs not be defined on the set \mathbf{T} of all triangles, where \mathbf{T} is identified with

$$
\left\{(a, b, c) \in \mathbb{R}^{3}: 0<a<b+c, 0<b<c+a, 0<c<a+b\right\} .
$$

However, it will be assumed that every center function is defined on a subset \mathbf{U} of \mathbf{T} having a non-empty interior. Since the interior of the zero set of a non-zero polynomial in any number of variables must be empty, it follows that a non-zero polynomial cannot vanish on \mathbf{U} if \mathbf{U} has a non-empty interior. This fact will be freely used.

Theorem 1 Let \mathcal{Z} be a center function and suppose that the intercepts x, y, and z of $\mathcal{Z}(A B C)$ are such that $x-y$ is a linear form in a, b, and c. Then there exists a unique $t \in \mathbb{R}$ such that

$$
\left[\begin{array}{l}
x-y \tag{6}\\
y-z \\
z-x
\end{array}\right]=\left[\begin{array}{ccc}
\frac{t+1}{2} & \frac{t-1}{2} & -t \\
-t & \frac{t+1}{2} & \frac{t-1}{2} \\
\frac{t-1}{2} & -t & \frac{t+1}{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] .
$$

Conversely, for every $t \in \mathbb{R}$ there is a center function \mathcal{S}_{t} on some $\mathbf{U}_{t} \subseteq \mathbf{T}$ such that the intercepts x, y, and z of $\mathcal{S}_{t}(A B C)$ satisfy (6). The largest such \mathbf{U}_{t} is defined by

$$
(a, b, c) \in \mathbf{U}_{t} \Longleftrightarrow a b+b c+c a \geq\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) t^{2}
$$

Consequently, \mathcal{S}_{t} is defined on all triangles of \mathbf{T} if and only if $-1 \leq t \leq 1$.
Proof: Let \mathcal{Z} be a center function and suppose that the intercepts x, y, and z of $\mathcal{Z}(A B C)$ satisfy the equation

$$
\begin{equation*}
x-y=\xi a+\eta b+\zeta c \tag{7}
\end{equation*}
$$

for some real numbers ξ, η, and ζ and for all triangles $A B C$ in some \mathbf{U}. Adding (7) to its iterates $y-z=\zeta a+\xi b+\eta c$ and $z-x=\eta a+\zeta b+\xi c$, we see that

$$
\begin{equation*}
\xi+\eta+\zeta=0 \tag{8}
\end{equation*}
$$

The permutation $(A B)$ corresponds to the substitution

$$
(x, y, z, a, b, c) \mapsto\left(y^{\prime}, x^{\prime}, z^{\prime}, b, a, c\right)=(b-y, a-x, c-z, b, a, c) .
$$

Applying this to (7), we obtain $(b-y)-(a-x)=\xi b+\eta a+\zeta c$ and hence $x-y=(\eta+1) a+$ $(\xi-1) b+\zeta c$. From this and (7), we get $\xi-\eta=1$. Using (8), we see that $\xi=(1-\zeta) / 2$ and $\eta=(-1-\zeta) / 2$. We obtain (6) by setting $\zeta=-t$.

Conversely, suppose $t \in \mathbb{R}$ is given, and let $A B C$ be a triangle in \mathbf{T} with side-lengths a, b, and c. Let

$$
\begin{equation*}
k=a^{2}+b^{2}+c^{2}-a b-b c-c a, \quad p=a b+b c+c a, \quad d=(a-b)(b-c)(c-a) \tag{9}
\end{equation*}
$$

First, we prove that if $p-k t^{2} \geq 0$, then there exists a unique point V whose intercepts x, y, and z satisfy (6) and its iterates

$$
\begin{equation*}
y-z=\frac{t+1}{2} b+\frac{t-1}{2} c-t a, \quad z-x=\frac{t+1}{2} c+\frac{t-1}{2} a-t b . \tag{10}
\end{equation*}
$$

Rewrite (6) and (10) as

$$
\begin{align*}
2 x-2 y & =[t(b-c)+a]-[t(c-a)+b], \tag{11}\\
2 y-2 z & =[t(c-a)+b]-[t(a-b)+c], \tag{12}\\
2 z-2 x & =[t(a-b)+c]-[t(b-c)+a], \tag{13}
\end{align*}
$$

and let u be defined by

$$
\begin{equation*}
2 x=t(b-c)+a+u, \tag{14}
\end{equation*}
$$

where u is an indeterminate whose value is to be computed. Then similar expressions for $2 y$, $2 z, 2 x^{\prime}, 2 y^{\prime}$, and $2 z^{\prime}$ are found using (11), (12), and (13). It now remains to show that there is a unique u for which $x y z-x^{\prime} y^{\prime} z^{\prime}$ vanishes. Denoting $4\left(x y z-x^{\prime} y^{\prime} z^{\prime}\right)$ by $g(u)$, we see that

$$
\begin{aligned}
2 g(u)= & (t(b-c)+a+u)(t(c-a)+b+u)(t(a-b)+c+u) \\
& -(-t(b-c)+a-u)(-t(c-a)+b-u)(-t(a-b)+c-u)
\end{aligned}
$$

and therefore

$$
\begin{equation*}
g(u)=u^{3}+\left(p-k t^{2}\right) u+\left(t^{3}-t\right) d \tag{15}
\end{equation*}
$$

Then $g^{\prime}(u)=3 u^{2}+p-k t^{2} \geq 0$. Therefore $g(u)$ is increasing and thus it has a unique zero, as desired.

Next, we prove that if $p-k t^{2}<0$, then there does not exist a unique point V whose intercepts x, y, z satisfy (6) and (10). Since a center function that is defined for $A B C$ is expected to be defined for $A C B$, and since the quantity d given in (9) changes sign when $A B C$ is replaced by $A C B$, we may assume that

$$
\begin{equation*}
t\left(t^{2}-1\right) d \leq 0 \tag{16}
\end{equation*}
$$

Following the steps in the previous case, it is enough to show that the cubic polynomial $g(u)$ given in (15) has more than one zero. Equivalently, it is enough to prove that $g\left(u_{0}\right) \leq 0$, where $u_{0}=\sqrt{\left(k t^{2}-p\right) / 3}$ is the larger zero of $g^{\prime}(u)$. But

$$
g\left(u_{0}\right)=u_{0}^{3}-\left(k t^{2}-p\right) u_{0}+t\left(t^{2}-1\right) d=\frac{-2}{3}\left(k t^{2}-p\right)^{3 / 2}+t\left(t^{2}-1\right) d<0
$$

by (16), as desired.
It remains to prove the last statement. If $t^{2} \leq 1$, then

$$
\begin{aligned}
p-k t^{2} & \left.\geq p-k \quad \text { (because } 2 k=(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0\right) \\
& =2(a b+b c+c a)-\left(a^{2}+b^{2}+c^{2}\right) \\
& =(a+b-c)(a+c-b)+(b+c-a)(b+a-c)+(c+a-b)(c+b-a) \\
& \geq 0 \text { (by the triangle inequality) }
\end{aligned}
$$

Conversely, if $t^{2}>1$, then there exists $(a, b, c) \in \mathbf{T}$ for which $p-k t^{2}<0$, or equivalently $p / k<t^{2}$. In fact, $p / k=1$ for the degenerate triple $(1,1,0)$ and $p / k=\infty$ for $(1,1,1)$ and therefore $p / k=t^{2}$ for some non-degenerate (a, b, c) of the form $a=b=1, c>0$. This completes the proof.

In view of Theorem 1 above, one may, at times, restrict attention to the case $-1 \leq t \leq 1$. The next theorem is essentially a restatement of Theorem 1 under this restriction.

Theorem 2 Let \mathcal{Z} be a center function on \mathbf{T} and suppose that the intercepts x, y, and z of $\mathcal{Z}(A B C)$ are such that $x-y$ is a linear form in a, b, and c. Then there exists a unique $t \in[-1,1]$ such that (6) holds.
Conversely, for every $t \in[-1,1]$ there is a center function \mathcal{Z}_{t} on \mathbf{T} such that the intercepts x, y, and z of $\mathcal{Z}_{t}(A B C)$ satisfy (6). Furthermore, $\mathcal{Z}_{t}(A B C)$ lies inside $A B C$ for all triangles.

Proof: We only need prove the last statement. Clearly, $\mathcal{Z}_{t}(A B C)$ lies inside $A B C$ if and only if $0<x<a$. In view of (14), this is equivalent to the requirement that $-a-t(b-c)<$ $u<a-t(b-c)$, where u is the unique zero of the polynomial g given in (15). Now this would follow if we prove that $g(-a-t(b-c))$ and $g(a-t(b-c))$ have different signs. But

$$
g(-a-t(b-c))=a L_{1} L_{2} \text { and } g(a-t(b-c))=-a L_{3} L_{4}
$$

where

$$
\begin{array}{ll}
L_{1}=t(a+b-2 c)+(a+b), & L_{2}=t(a+c-2 b)-(a+c), \\
L_{3}=t(a+b-2 c)-(a+b), & L_{4}=t(a+c-2 b)+(a+c)
\end{array}
$$

Calculating each of the linear functions $L_{1}, L_{2}, L_{3}, L_{4}$ at $t= \pm 1$, we conclude that

$$
L_{1}>0, \quad L_{2}<0, \quad L_{3}<0, \quad L_{4}>0
$$

for all t in $[-1,1]$. This completes the proof.
Note 1: If \mathcal{S}_{t} denotes the center function defined by (6), then it is easy to check that \mathcal{S}_{0}, \mathcal{S}_{1} and \mathcal{S}_{-1} are nothing but the centroid G, the Nagel center N and the Gergonne center N^{\prime}, respectively (Fig. 2). Before studying the locus of $\mathcal{S}_{t}(A B C)$ as t ranges in $[-1,1]$, let us mention two other centers that naturally arise in connection with (6). Note first that (6) can be rewritten in the equivalent forms

$$
\begin{align*}
x^{\prime}+y & =\frac{1-t}{2}(a+b)+t c \tag{17}\\
x+y^{\prime} & =\frac{1+t}{2}(a+b)-t c \tag{18}
\end{align*}
$$

The centers that satisfy

$$
x^{\prime}+y=y^{\prime}+z=z^{\prime}+x=\frac{a+b+c}{3}, \quad x+y^{\prime}=y+z^{\prime}=z+x^{\prime}=\frac{a+b+c}{3}
$$

correspond to $t=1 / 3$ and $t=-1 / 3$, respectively. With reference to Fig. 1, they may be duly called the (first and second) perimeter trisecting centers (or perimeter trisectors). The first one, $\mathcal{S}_{1 / 3}$, appears as Y_{9} in [6, page 182] and as X_{369} in [7, page 267], where it is called the trisected perimeter point. The second one, $\mathcal{S}_{-1 / 3}$, does not seem to appear in the existing literature.

Figure 2: The red curve $\left\{\mathcal{S}_{t} \mid-1 \leq t \leq 1\right\}$ terminated by the Nagel point N and the Gergonne point N^{\prime} together with its algebraic closure, the cubic \mathcal{C}

3. The locus of centers \mathcal{S}_{t} and its algebraic closure

Theorems 3 and 4 give the trilinear equation of \mathcal{S}_{t} as t ranges in $[-1,1]$ and the trilinear coordinates of $\mathcal{S}_{1 / 3}$ and $\mathcal{S}_{-1 / 3}$. Note 2 compares the result with that of YFF as recorded in [7, page 267].

Theorem 3 For $t \in[-1,1]$, let \mathcal{S}_{t} be the center defined by any of (6), (17), (18), or equivalently by $2 x=t(b-c)+a+u$, where u is the solution of (15). Let the trilinear coordinates of \mathcal{S}_{t} be denoted by (α, β, γ). Then the locus of \mathcal{S}_{t} as t ranges in $[-1,1]$ is a subset of the cubic curve \mathcal{C} given by

$$
\begin{equation*}
(1-2 \cos A) \alpha\left(b^{2} \beta^{2}-c^{2} \gamma^{2}\right)+(1-2 \cos B) \beta\left(c^{2} \gamma^{2}-a^{2} \alpha^{2}\right)+(1-2 \cos C) \gamma\left(a^{2} \alpha^{2}-b^{2} \beta^{2}\right)=0 \tag{19}
\end{equation*}
$$

In the irreducible case \mathcal{C} is the algebraic closure of $\left\{\mathcal{S}_{t} \mid-1 \leq t \leq 1\right\}$.
Proof: The barycentric coordinates $\left(x_{a}: x_{b}: x_{c}\right)$ and the trilinear coordinates $(\alpha: \beta: \gamma)$ of points in the plane of $A B C$ are related by

$$
\begin{equation*}
\left(x_{a}: x_{b}: x_{c}\right)=(a \alpha: b \beta: c \gamma) \text { and } \frac{x_{c}}{x_{b}}=\frac{x}{x^{\prime}} \text { etc. } \tag{20}
\end{equation*}
$$

We conclude, e.g.,

$$
\begin{equation*}
\left(x_{a}: x_{b}: x_{c}\right)=\left(y z^{\prime}: y z: y^{\prime} z^{\prime}\right) . \tag{21}
\end{equation*}
$$

After substituting (14) and the analogous expressions for $x^{\prime}, y, y^{\prime}, z, z^{\prime}$, we obtain a rational $\operatorname{map}(t: u: 1) \mapsto\left(x_{a}: x_{b}: x_{c}\right)$ with

$$
\begin{align*}
& x_{a}=(t(c-a)+b+u)(t(b-a)+c-u), \\
& x_{b}=(t(c-a)+b+u)(t(a-b)+c+u), \tag{22}\\
& x_{c}=(t(a-c)+b-u)(t(b-a)+c-u) .
\end{align*}
$$

This is birational, because there is a rational inverse obeying

$$
\begin{align*}
t & =\frac{c\left(x_{b}-x_{a}\right)\left(x_{c}+x_{a}\right)+b\left(x_{b}+x_{a}\right)\left(x_{c}-x_{a}\right)}{(2 a-b-c)\left(x_{b}+x_{a}\right)\left(x_{c}+x_{a}\right)} \\
u & =\frac{b(b-a)\left(x_{b}+x_{a}\right)\left(x_{c}-x_{a}\right)-c(c-a)\left(x_{b}-x_{a}\right)\left(x_{c}+x_{a}\right)}{(2 a-b-c)\left(x_{b}+x_{a}\right)\left(x_{c}+x_{a}\right)} \tag{23}
\end{align*}
$$

We substitute these equations in (15) thus applying the birational map to the cubic curve $g(u)=0$. After dividing by $4 b c(2 a-b-c)^{2} x_{a}\left(x_{c}+x_{a}\right)\left(x_{b}+x_{a}\right)$ we obtain for the image curve \mathcal{C} the barycentric equation

$$
\begin{equation*}
\mathcal{C}: k_{a} x_{a}\left(x_{b}^{2}-x_{c}^{2}\right)+k_{b} x_{b}\left(x_{c}^{2}-x_{a}^{2}\right)+k_{c} x_{c}\left(x_{a}^{2}-x_{b}^{2}\right)=0 \tag{24}
\end{equation*}
$$

with coefficients

$$
\begin{gather*}
k_{a}=b c-b^{2}-c^{2}+a^{2}=b c(1-2 \cos A), \quad k_{b}=a c-a^{2}-c^{2}+b^{2}=a c(1-2 \cos B), \tag{25}\\
k_{c}=a b-a^{2}-b^{2}+c^{2}=a b(1-2 \cos C)
\end{gather*}
$$

This implies the trilinear equation (19).

Note 2: In [7, Article 8.40, page 240], a cubic whose trilinear equation is of a form

$$
x \alpha\left(\beta^{2}-\gamma^{2}\right)+y \beta\left(\gamma^{2}-\alpha^{2}\right)+z \gamma\left(\alpha^{2}-\beta^{2}\right)=0
$$

- similar to (19) - is denoted by $Z(P)$, where P is the point with trilinear coordinates $x: y: z$. These cubics are studied in detail in [8] and [2], and many examples of them have appeared in the literature.

In the sequel we list some properties of the cubic \mathcal{C} obeying the barycentric equation (24):

1) \mathcal{C} always passes through the points with barycentric coordinates $A_{g}=(-1: 1: 1)$, $B_{g}=(1:-1: 1), C_{g}=(1: 1:-1)$ which beside the centroid $G=(1: 1: 1)$ are marked in Figs. 3-5 and connected by dashed lines. In these figures the red portion of \mathcal{C} around the centroid G is the locus of \mathcal{S}_{t} for $-1<t<1$ which is addressed in Theorem 2.
2) The cubic \mathcal{C} is preserved under the mapping which exchanges the intercepts $\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)$ as well as $\left(z, z^{\prime}\right)$. This is the well-known quadratic birational transformation of isotomic points, in barycentric coordinates

$$
P=\left(x_{a}: x_{b}: x_{c}\right) \mapsto P^{\prime}=\left(x_{b} x_{c}: x_{a} x_{c}: x_{a} x_{b}\right)=\left(1 / x_{a}: 1 / x_{b}: 1 / x_{c}\right)
$$

By (23) this is equivalent to changing the signs of t and u.

Figure 3: The irrational cubic (19)
3) The barycentric equation (24) of the cubic can also be written in the form

$$
\operatorname{det}\left(\begin{array}{ccc}
k_{a} & k_{b} & k_{c} \\
x_{a} & x_{b} & x_{c} \\
x_{b} x_{c} & x_{a} x_{c} & x_{a} x_{b}
\end{array}\right)=0 .
$$

Hence, \mathcal{C} is the algebraic closure of the set of points P which are aligned with their isotomic counterparts P^{\prime} and the fixed point K with barycentric coordinates ($k_{a}: k_{b}: k_{c}$) (Fig. 3). This implies:

- The lines connecting K with the vertices A, B, C pass also through the remaining points of intersection between \mathcal{C} and the sides of the given triangle.
- The controid G and the points A_{g}, B_{g} and C_{g} remain fixed under the isotomic transformation. Therefore the tangent lines of \mathcal{C} at these points pass through K.
- The isotomic transform of K is the point $K^{\prime}=\left(k_{b} k_{c}: k_{a} k_{c}: k_{a} k_{b}\right)$. The tangent line at K passes through the corresponding K^{\prime}.
- Point K is aligned with the Nagel point N and the Gergonne point N^{\prime} (Fig. 3) ${ }^{1}$ as well as with the centers $\mathcal{S}_{1 / 3}$ and $\mathcal{S}_{-1 / 3}$ (Fig. 2).

4) In the generic case the cubic \mathcal{C} is irrational, i.e., it has no singularity. However, it is reducible in the following cases:

[^1]

Figure 4: The cubic \mathcal{C} splits for $b+c=2 a$

Figure 5: Isosceles triangle ($a=b$) with reducible cubic \mathcal{C}

- Under $a+b=2 c$ it splits into a line and an ellipse (see Fig. 4). Then the coefficients k_{a}, k_{b}, k_{c} in the barycentric equation obey $k_{a}+k_{b}=0$, and the line $x_{a}+x_{b}=0$ is a component of \mathcal{C}. The same effect shows up under the permuted conditions $b+c=2 a$ or $c+a=2 b$. If in these cases the quadratic component of \mathcal{C} is irreducible, then it is the algebraic closure of $\left\{\mathcal{S}_{t} \mid-1 \leq t \leq 1\right\}$.
- For an isosceles triangle $A B C$, e.g., with $a=b$ (see Fig. 5), two of the coefficients become equal. Then the cubic consists of the axis of symmetry and an ellipse. All centers \mathcal{S}_{t} are located on the axis.
- For an equilateral triangle $A B C$ the cubic splits into the three sides. The points \mathcal{S}_{t} coincide with the center G.

Note 3: Triangles $A B C$ with $b=c$ or $a=(b+c) / 2$ were called side-balanced or A-side-balanced in [4]. Clearly, $a=(b+c) / 2$ is equivalent to $\sin A=(\sin B+\sin C) / 2$ and thus side-balanced means sine-balanced. The family of such triangles appeared in [4] in the following context: The Nagel point N of $A B C$ has the circumcentral property $N B=N C$ iff $A B C$ is sidebalanced. This is equivalent to the following variation on Steiner-Lehmus theme [5]: If $B N_{b}$ and $C N_{c}$ are the cevians through the Nagel point N of $A B C$, then $N N_{b}=N N_{c}$ iff $A B C$ is side-balanced.
The similar family of cosine-balanced triangles appeared in [4] in the form: The Nagel point N of $A B C$ has the Fermat-Torricelli property $\angle A F B=\angle A F C$ iff $A B C$ is cosine-balanced. The family of angle-balanced triangles (i.e., triangles in which $B=C$ or $A=(B+C) / 2$ or equivalently $A=60^{\circ}$) pops up very frequently in the literature.
5) The tangent lines of the cubic \mathcal{C} at the vertices A, B, and C are given by the coefficients of x_{a}^{2}, x_{b}^{2}, and x_{c}^{2} in the polynomial on the left hand side of (24). Hence they obey

$$
k_{c} x_{c}-k_{b} x_{b}=0, \quad k_{a} x_{a}-k_{c} x_{c}=0, \quad k_{b} x_{b}-k_{a} x_{a}=0
$$

respectively. These three lines meet at point K^{\prime}.
6) Thus we know the quadruples of tangent lines passing through K and those through K^{\prime}. If put into a particular order, their cross ratios are equal, and this is a projective invariant of the cubic \mathcal{C}. Computation gives

$$
\begin{equation*}
\delta=\frac{k_{c}^{2}-k_{a}^{2}}{k_{c}^{2}-k_{b}^{2}}=\frac{b(c-a)(2 a+2 c-b)(2 b-a-c)}{a(c-b)(2 b+2 c-a)(2 a-b-c)} \tag{26}
\end{equation*}
$$

apart from permutations of (a, b, c). As long as neither the numerator nor the denominator vanishes, the cubic \mathcal{C} is irreducible.
We summarize:
Theorem 4 The cubic \mathcal{C} (24), which in the irreducible case is the algebraic closure of the set $\left\{\mathcal{S}_{t} \mid-1 \leq t \leq 1\right\}$, has the following properties.

1. \mathcal{C} is reducible for equilateral or isosceles triangles $A B C$ or under one of the conditions $a+b=2 c, b+c=2 a$ or $c+a=2 b$. Otherwise it is irrational with the characteristic cross ratio (26).
2. \mathcal{C} is the algebraic closure of points P which are collinear with their isotomic transform P^{\prime} and with the fixed point K with barycentric coordinates $\left(k_{a}: k_{b}: k_{c}\right)$ by (25).
3. \mathcal{C} passes through the vertices A, B, C, through the centroid G and the points A_{g}, B_{g}, C_{g} with barycentric coordinates ($-1: 1: 1$),..., through the Nagel point N and the Gergonne point N^{\prime}, and through $K=\left(k_{a}: k_{b}: k_{c}\right)$ and its isotomic transform K^{\prime}. The tangent lines of \mathcal{C} at G, A_{g}, B_{g}, and C_{g} have the point K in common. The tangent lines at A, B, C, and K meet at K^{\prime}.

We conclude with the coordinates of the particular points $\mathcal{S}_{ \pm 1 / 3}$:
Theorem 5 The trilinear coordinates α, β, γ of the first perimeter trisecting center $\mathcal{S}_{1 / 3}$ are given by

$$
\gamma: \beta=c(c-b+3 a-U): b(b-c+3 a+U),
$$

where U is the unique real zero of

$$
G(U)=U^{3}+(9 p-k) U-8 d
$$

and where k, p, and d are as given in (9).
The trilinear coordinates α, β, γ of the second perimeter trisecting center $\mathcal{S}_{-1 / 3}$ are given by

$$
\gamma: \beta=b(c-b+3 a+W): c(b-c+3 a-W)
$$

where W is the unique real zero of

$$
H(W)=W^{3}+(9 p-k) W+8 d
$$

Proof: The first statement follows by specifying $t=1 / 3$ in (20) and (22) and letting $U=3 u$. Similarly for the second statement.

Note 4: The trilinear coordinates of the first perimeter trisecting center $X_{369}=\mathcal{S}_{1 / 3}$ are given in [7, page 267] and [9] by the unsymmetric form
$\alpha: \beta: \gamma=b c(v-c+a)(v-a+b): c a(c+2 a-v)(a+2 b-v): a b(v-c+a)(a+2 b-v)$,
where v is the unique real zero of

$$
\begin{aligned}
2 v^{3} & -3(a+b+c) v^{2}+\left(a^{2}+b^{2}+c^{2}+8 a b+8 b c+8 c a\right) v \\
& -\left(b^{2} c+c^{2} a+a^{2} b+5 b c^{2}+5 c a^{2}+5 a b^{2}+9 a b c\right)
\end{aligned}
$$

Note 5: Considering the angle analogue of the above situation, and referring to Fig. 1, we define the angles X, Y, and Z associated with P by

$$
X=\angle B A V, \quad Y=\angle C B V, \quad Z=\angle A C V
$$

and we ask about those centers for which X, Y, and Z are linear or quasi-linear in the angles A, B, and C of triangle $A B C$. Here again, there are only three centers for which X, Y, and Z are linear in A, B, and C, namely, the incenter, the orthocenter, and the circumcenter; see [1, Theorem 2]. As for the quasi-linearity condition $\left[\begin{array}{lll}X & Y & Z\end{array}\right] M=\left[\begin{array}{lll}A & B & C\end{array}\right] L$, it is again equivalent to the requirement that $X-Y$ (and consequently $Y-Z$ and $Z-X$) is linear in A, B, and C. This in turn is clearly equivalent to the requirement that the central angles $\angle B P C, \angle C P A$, and $\angle A P B$ are linear in A, B, and C. This follows from the observation $\angle B P C=A+Z+(B-Y)$. Thus the centers for which $X-Y$ is linear in A, B, and C are those centers for which the angles $\angle B P C, \angle C P A$, and $\angle A P B$ are linear forms in A, B, and C. These centers are the subject of study in [3], and their locus is what was called the Balaton curve.

References

[1] S. Abu-Saymeh, M. HajJa: Triangle centers with linear intercepts and linear subangles. Forum Geom. 5, 33-36 (2005).
[2] H.M. Cundy, C.F. Parry: Some cubic curves associated with a triangle. J. Geom. 53, 41-66 (1995).
[3] H. Dirnböck, J. Schoissengeier: Curves related to triangles: The Balaton-Curves. J. Geometry Graphics 7, 23-39 (2003).
[4] M. HajJa: Triangle centres: some questions in Euclidean geometry. J. Math. Edu. Sci. Technology 32, 21-36 (2001).
[5] M. HajJa: Cyril F. Parry's variations on the Steiner-Lehmus theme. preprint.
[6] C. Kimberling: Central points and central lines in the plane of a triangle. Math. Mag. 67, 163-187 (1994).
[7] C. Kimberling: Triangle Centers and Central Triangles. Congr. Numer. 129 (1998), 285 pp.
[8] P. Yff: Two families of cubics associated with a triangle. In J.M. Anthony (ed.): Eves' Circles, Orlando 1991, pp. 127-137, MAA Notes 34, Math. Assoc. America, Washington, D.C., 1994.
[9] P. YfF: Private communications.

Received June 14, 2006; final form May 6, 2007

[^0]: * This work with regard to the first two authors is supported by a research grant from Yarmouk University.

[^1]: ${ }^{1}$ Note that there is a pencil of cubics passing through the nine points $A, B, C, G, A_{g}, B_{g}, C_{g}, N$, and N^{\prime}.

