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Abstract. Let two unit circles kA, kB in perpendicular planes be given such that
each circle contains the center of the other. Then the convex hull of these circles is
called Oloid. In the following some geometric properties of the Oloid are treated
analytically. It is proved that the development of the bounding torse Ψ leads to
elementary functions only. Therefore it is possible to express the rolling of the
Oloid on a fixed tangent plane τ explicitly. Under this staggering motion, which is
related to the well-known spatial Turbula-motion, also an ellipsoid Φ of revolution
inscribed in the Oloid is rolling on τ . We give parameter equations of the curve
of contact in τ as well as of its counterpart on Φ.
The surface area of the Oloid is proved to equal the area of the unit sphere. Also
the volume of the Oloid is computed.
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1. Introduction

Let kA, kB be two unit circles in perpendicular planes Π1,Π2 such that kA passes through
the center MB of kB and kB passes through the center MA of kA (see Fig. 1)1, The torse

(developable) Ψ connecting kA and kB is the enveloping surface of all planes τ that touch kA
and kB simultaneously. If any tangent plane τ contacts kA at A and kB at B, then the line
AB is a generator of Ψ. In this case the tangent line of kA at A must intersect the tangent
line of kB at B in a finite or infinite point T on the line 12 of intersection between Π1 and Π2
(see Fig. 2; the triangle ABT can also be found in Fig. 5 and Fig. 6).

1All figures in this paper are orthogonal views. But only in Fig. 5 and Fig. 6 the superscript “n” is used
to indicate that geometric objects have been projected orthogonally into a plane.
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Figure 1: Circles kA, kB defining the Oloid

We choose the planes Π1,Π2 as coordinate planes and the midpoint O of MAMB as the
origin of a cartesian coordinate system. Then we may set up the equations of kA, kB as

kA : x2 + (y + 1
2
)2 = 1 and z = 0

kB : (y − 1
2
)2 + z2 = 1 and x = 0 .

(1)

We parametrize the torse Ψ by the arc-length t of kA with the starting point t = 0 at U on

Figure 2: Coordinate system and notation

the negative y-axis. Then we obtain the coordinates

A =

(
sin t , −1

2
− cos t , 0

)
. (2)
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Since the point T on the y-axis is conjugate to A with respect to kA, we get

T =

(
0, −2 + cos t

2 cos t
, 0

)
. (3)

In the same way conjugacy between T and B with respect to kB implies

B =

(
0,

1

2
− cos t

1 + cos t
, ±

√
1 + 2 cos t

1 + cos t

)
. (4)

The upper sign of the z-coordinate corresponds to the upper half of Ψ.2

From (2) and (4) we compute the squared length of the line segment AB as

AB
2
= sin2 t+

(
1 + cos t− cos t

1 + cos t

)2
+

1 + 2 cos t

(1 + cos t)2
= sin2 t+ (1 + cos t)2 − 2 cos t+ 1 ,

which results in

Theorem 1: All line segments AB of the torse Ψ are of equal length

AB =
√
3 . (5)

This surprising result has already been proved in [7]. But probably also P. Schatz was aware
of this result when he took out a patent for the Oloid (cf. [8]) in 1933 (see also [9], Figures
155, 156 and p. 122).

Let u denote the arc-length of kB, starting on the positive y-axis. Then A ∈ kA and
B ∈ kB are points of the same generator of Ψ if and only if the parameters t of A and u of B
obey the involutive relation

cosu = − cos t

1 + cos t
or cos2

t

2
cos2

u

2
=

1

4
. (6)

For real generators of Ψ the condition 1 + 2 cos t ≥ 0 is necessary. By the restriction

− 2π

3
< t <

2π

3
and − 2π

3
< u <

2π

3
(7)

we avoid vanishing denominators. It has to be noted that for Ψ the parametrization by t
becomes singular at t = ±2π/3.

In the following we restrict each generator of Ψ to the line segment AB. Thus we obtain
just the boundary of the convex hull of kA and kB.

2. Development of the Torse Ψ

When Ψ is developed into a plane τ , then the circles kA, kB are isometrically transformed into
planar curves kdA, k

d
B, respectively. It is well-known from Differential Geometry (see e.g. [11],

p. 209 or [12], p. 72) that at corresponding points A ∈ kA ⊂ Ψ and Ad ∈ kdA ⊂ τ the geodesic
curvatures are equal. This can be expressed in a more geometric way as follows (cf. [4], p. 295):

2In the generalization presented in [5] the circles kA, kB are replaced by congruent ellipses with a common
axis.
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When τ is specified as the tangent plane of Ψ along the generator AB, then the curvature
center K of kdA at Ad =A is located on the curvature axis of kA at A, which is the axis of
revolution of (the curvature circle) kA (see Fig. 2, compare Fig. 3). Since K = (− 1

2
, 0,±k) 3

is aligned with T and B, we get for the squared curvature radius

ρ2 = AK
2
= 1 + k2 =

2 + 2 cos t

1 + 2 cos t
.

Hence the curvature κ of kdA reads

1

ρ
= κ(t) =

√
1 + 2 cos t

2(1 + cos t)
. (8)

This is the so-called natural equation of kdA with arc-length t .4

In order to deduce an explicit representation of kdA, we choose τ as the tangent plane at
the point U ∈ kA with minimal y-coordinate. In τ we introduce a cartesian coordinate system
with origin Ud=U and axes I and II (see Fig. 3). We define the first coordinate-axis I parallel
to the tangent vector of kA at U . Then due to Riccati’s formula (see e.g. [10], p. 44) we get

IA(t) = I0 +

∫ t

0

cosα(t) dt

IIA(t) = II0 +

∫ t

0

sinα(t) dt

for α(t) := α0 +

∫ t

0

κ(t) dt (9)

with the specifications α0 = I0 = II0 = 0 . By integration of (8) we obtain

α(t) = 2 arcsin

√
6 sin t

3
√
1 + cos t

− arcsin

√
3 tan t

2

3
. (10)

Theorem 2: In the cartesian coordinate system (I, II ) (see Fig. 4) the arc length parame-
trization of the development kdA of the circle kA reads

IA(t) =
2
√
3

9

[
√

2(1 + 2 cos t)(1− cos t) + arccos

√
2 cos t√

1 + cos t

]

IIA(t) =

√
3

9

[
4(1− cos t) + ln

2

1 + cos t

]
.

(11)

Proof: The integrals in the left column of (9) could not be immediately solved with the use
of common computer-algebra-systems. We succeeded as follows: The integral for IIA(t) can
be transformed into

IIA(t) =

∫ t

0

sin

(
2 arcsin

√
6 sin t

3
√
1 + cos t

− arcsin

√
3 tan t

2

3

)
dt =

=

∫ t

0

[
4
√
6 sin t

2
(1 + 2 cos t)

9
√
1 + cos t

−
√
3 tan t

2
(4 cos t− 1)

9

]
dt ,

3The sign of the z-coordinate is equal to that of B in (4).
4Note ρ̇(0) = 0 , but ρ̈(0) = 1

18

√
3 6= 0. This proves that at Ud there is exactly a four-point contact between

kd
A and its curvature circle (see Fig. 4 or Fig. 5).



H
.
D
irn

b
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Figure 3: Axonometric view of the Oloid and its development into τ
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and this gives rise to the second equation in (11). From

dIIA
dt

=

√
3

9
sin t

(
4 +

1

1 + cos t

)
= sinα (12)

due to (9) we obtain

dIA
dt

= cosα =

√

1−
(
dIIA
dt

)2
=

√
6(1 + 2 cos t)

3

2

9
√
1 + cos t

. (13)

Then the integration can be carried out using the substitution t := tan t
2
. The first quarter

of the developed curve kdA ends at

(
IA
(
2π
3

)
, IIA

(
2π
3

))
=

(
2π
√
3

9
,
2
√
3

9
(3 + ln 2 )

)
≈ (1.2092 , 1.4215 ).

There is an analogous representation of the developed image kdB of the circle kB in terms
of its arc-length u. The curves kdA and kdB are congruent since halfturns about the axes
x ± z = y = 0 interchange kA and kB while the Oloid is transformed into itself. However,
based on (11) and due to (5) the curve kdB can also be parametrized in the form

IB(t) = IA(t) +
√
3 cos eAB ,

IIB(t) = IIA(t) +
√
3 sin eAB .

(14)

Here the angle eAB = α+γ (see Fig. 4) defines the direction of the developed generator AdBd.
Angle α has already been computed in (12) and (13). γ is the angle made by the generator
AB of Ψ and the tangent vector

vA = (cos t, sin t, 0) (15)

of kA at A. The dot product of vA and the vector
−→
AB according to (2) and (4) gives

√
3 cos γ = vA ·

−→
AB = − sin t cos t+ sin t+ sin t cos t− sin t cos t

1 + cos t
=

sin t

1 + cos t
.

Elementary trigonometry leads to

sin γ =

√
2(1 + 2 cos t)

3(1 + cos t)
(16)

and finally to

sin eAB =
7 + 7 cos t+ 4 cos2 t

9(1 + cos t)

cos eAB = − 2
√
2(2 + cos t)

√
(1− cos t)(1 + 2 cos t)

9(1 + cos t)
.

(17)

We substitute these formulas in (14). Then due to (11) we obtain
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Figure 4: The development of the Oloid with the images kdA of kA and kdB of kB together with the evolute ekd

A

of kdA
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Figure 5: Detail of Fig. 4 with the image knO of the center curve kO
under orthogonal projection into τ

Theorem 3: In the cartesian coordinate system (I, II ) of τ (see Fig. 4 or Fig. 3) the devel-
opment kdB of the circle kB has the parametrization with respect to the arc-length t of kA as
follows:

IB(t) =
2
√
3

9

[
arccos

√
2 cos t√
1 + cos t

−
√

2(1− cos t)(1 + 2 cos t)

(1 + cos t)

]

IIB(t) =

√
3

9

[
ln

2

1 + cos t
+

11 + 7 cos t

1 + cos t

]
.

(18)

In a similar way also the evolute ekd

A

of kdA (see Fig. 4 or Fig. 5) can be computed. The
parameter representation

IK(t) = IA(t)− ρ sinα
IIK(t) = IIA(t) + ρ cosα
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of ekd

A

makes use of the curvature radius ρ according to (8). From (12) and (13) we obtain

ρ sinα =
(5 + 4 cos t)

√
6(1− cos t)

9
√
1 + 2 cos t

ρ cosα =
2
√
3

9
(1 + 2 cos t)

and finally as parametrization of the evolute ekd

A

of kdA

IK(t) =
2
√
3

9
arccos

√
2 cos t√
1 + cos t

−
√

2(1− cos t)√
3(1 + 2 cos t)

IIK(t) =

√
3

9

[
6 + ln

2

1 + cos t

]
.

(19)

The evolute ekd

A

obviously (see Fig. 4) does not pass through the cusps of kdA; the curvature

radius ρ tends to infinity. This reveals that these cuspidal points are not ordinary. For kdB
the Taylor-series expansion of the parameter representation (18) at t = 0 is

IB(t) =
1

360
t5 +O(t7), IIB(t) =

√
3 +

√
3

12
t2 +O(t4).

Therefore the singularities of kdA and kdB are of order 2 and class 3 (German: Rückkehrflach-
punkte).

3. Motions Related to the Oloid

According to Fig. 3 we assume that the Oloid is rolling on the upper side of τ . In the following
we therefore choose for point B in (4) the negative z-coordinate. For the sake of brevity we
substitute

s := sin t and c := cos t with − 1
2
< c ≤ 1 , −1 ≤ s ≤ 1 , s2 + c2 = 1 . (20)

In order to describe the rolling of Ψ on τ we introduce a moving frame of Ψ with origin
A ∈ kA . The first vector of this frame is the tangent vector vA according to (15). The second
vector wA perpendicular to vA is specified in the tangent plane τ . We define

wA :=
1

sin γ

(
1√
3

−→
AB − vA cos γ

)
=

1√
2(1 + c)

(
−s
√
1 + 2c , c

√
1 + 2c , −1

)
.

(21)

The vector

nA := vA ×wA =
1√

2(1 + c)

(
−s , c ,

√
1 + 2c

)
(22)

perpendicular to τ completes this cartesian frame. nA is pointing to the interior of Ψ .
While the Oloid is rolling on the fixed plane τ , the frame (A; vA,wA, nA) shall be moving

along Ψ in such a way, that A is the running point of contact between kA and τ . This
implies that A ∈ kA is always coincident with the corresponding point Ad ∈ kdA. Therefore
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the elements of the moving frame get the following coordinates with respect to the cartesian
coordinate system (U d; I, II, III ) attached to τ :

A = (IA(t), IIA(t), 0) , vA = (cosα, sinα, 0) ,

wA = (− sinα, cosα, 0) , nA = (0, 0, 1) .
(23)

Let (x, y, z) denote the coordinates of any point P attached to the Oloid. The required
representation of the motion consists of a matrix equation which allows to compute the in-
stantaneous coordinates (I, II, III ) of point P with respect to the fixed plane τ , in dependence
of the motion parameter t . In order to obtain this equation we firstly compute the coordinates
(ξ, η, ζ) of P with respect to the moving frame (A; vA,wA, nA). Though P is attached to Ψ,
these coordinates are dependent on t. From (2), (15), (21) and (22) we get




x
y
z


 =




s
−1
2
− c
0


+

1√
2(1 + c)




c
√

2(1 + c) −s
√
1 + 2c −s

s
√

2(1 + c) c
√
1 + 2c c

0 −1
√
1 + 2c






ξ
η
ζ


 .
(24)

Secondly, according to (23) the motion of the moving frame with respect to τ (see Fig. 3)
reads 


I

II

III


 =




IA(t)
IIA(t)
0


+




cosα − sinα 0
sinα cosα 0
0 0 1






ξ
η
ζ


 .

Now we eliminate (ξ, η, ζ) from these two matrix equations with orthogonal 3×3-matrices.
After substituting (11), (12) and (13) we obtain by straight-forward calculation

Theorem 4: Based on the cartesian coordinate systems (x, y, z) in the moving space and
(I, II, III ) in the fixed space, the rolling of the Oloid on the tangent plane τ can be represented
as




I

II

III


 =

√
3

9




cs
√
1 + 2c

2(1 + c)
√

2(1 + c)
+ 2 arccos

c
√
2√

1 + c

15 + 13c− c2

2(1 + c)
+ ln

2

1 + c

3
√
3 (2 + c)

2
√

2(1 + c)




+
(
aij

)



x
y
z


 , where

(
aij

)
=

√
3

9




(5 + c)
√
1 + 2c√

2(1 + c)

(2 + c)s
√
1 + 2c

(1 + c)
√

2(1 + c)

(5 + 4c)s

(1 + c)
√

2(1 + c)

(c− 1)s

1 + c

5 + 5c− c2

1 + c
− (1 + 2c)

√
1 + 2c

1 + c

− 3s
√
3√

2(1 + c)

3c
√
3√

2(1 + c)

3
√

3(1 + 2c)√
2(1 + c)




.

Here c and s stand for cos t and sin t, respectively, while the motion parameter t obeys (7).

The first vector on the right side of this matrix equation represents the path kO of the
Oloid’s center O under this rolling motion. In particular, the third coordinate of this vector
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gives the oriented distance

r :=
2 + c

2
√

2(1 + c)
(25)

between O and the tangent plane for each t. Due to the introduced moving frame, this
distance r equals the dot product nA ·

−→
AO . One can verify that for each t the velocity vector

of the center curve kO is perpendicular to the axis AdBd of the instantaneous rotation5 (see
orthogonal view knO of kO in Fig. 5 or Fig. 6).

The rolling of the Oloid is truly staggering. It is related to the Turbula motion (see [13] or
[7]6 and the references there) which is used for shaking liquids. It turns out that the Turbula
motion is inverse to the motion of the moving frame in (24).

The circles kA and kB can also be seen as singular surfaces k̂A, k̂B of 2nd class. The
coordinates (u0 : u1 : u2 : u3) of their tangent planes

u0 + u1x+ u2y + u3z = 0

match the “tangential equations”

k̂A : 4u20 − 4u0u2 − 4u21 − 3u22 = 0 , k̂B : 4u20 + 4u0u2 − 3u22 − 4u23 = 0 .

Then due to a standard theorem of Projective Geometry the torse Ψ is not only tangent to
kA and kB but to all surfaces of 2nd class included in the range which is spanned by k̂A and
k̂B. Among these surfaces there is an ellipsoid Φ of revolution7 obeying the equation

Φ: 6x2 + 4y2 + 6z2 = 3 or Φ̂ : 1
2
(k̂A + k̂B) = 4u20 − 2u21 − 3u22 − 2u23 = 0 (26)

with focal points MA,MB and semi-axes
√
3
2

and 1√
2
(cf. [13], p. 31). The curve l of contact

between Φ and the torse Ψ is located on cylinders which are the images of kA and kB,
respectively, in the polarity with respect to Φ. Therefore this curve has the representations

l : 3x2 +
(
y − 1

2

)2
= 3z2 +

(
y + 1

2

)2
= 1 or

x =
s

2 + c
, y = − 3c

2(2 + c)
, z =

±
√
1 + 2c

2 + c
.

(27)

Together with the Oloid also the inscribed ellipsoid Φ is rolling on τ . In the fixed plane τ the
point of contact with the rolling ellipsoid traces a curve ld . The parameter representation

ld : I =
2
√
3

9
arccos

c
√
2√

1 + c
, II =

√
3

9

[
ln

2

1 + c
+

3(5 + c)

2 + c

]
, III = 0 (28)

of this isometric image of l ⊂ Ψ is obtained by transforming the coordinates of l given in (27)
(negative sign) under the matrix equation of Theorem 4 .

Fig. 6 shows not only the fixed tangent plane τ with the developed curves kdA, k
d
B and ld

in true shape. In this figure also an orthogonal view of the Oloid with the inscribed ellipsoid
Φ and the curve l of tangency is displayed.

5In general the instantaneous motion is a helical motion. However when a torse is rolling on a plane, the
helical parameter must vanish (cf. [3], p. 161 or [6]).

6In this paper a very particular plane-symmetric six-bar loop is studied which is also displayed in [1],
Figure 1. In each position of this loop and for each two opposite links Σ,Σ′ there is a plane τ of symmetry.
It turns out that relatively to Σ these planes τ are tangent to a torse of type Ψ. The Turbula motion is the
motion of Σ relative to τ , when in τ the generator of the torse is kept fixed.

7In the cases treated in [5] kA and kB are ellipses, but Φ is a sphere. This implies that the center O of
gravity has a constant distance to τ during the rolling motion.
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Figure 6: The Oloid and the inscribed ellipsoid Φ are rolling on τ while the curve l of contact between Ψ and Φ traces ld
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4. Surface Area and Volume of the Oloid

As the development of a torse is locally an isometry, the computation of the area of Ψ can
be carried out either in the 3-space or after the development into the plane τ . We prefer the
latter and use a formula given in [2], p. 118, eq. (5): The area swept out by the line segment
AB under a planar motion for t0 ≤ t ≤ t1 can be computed according to

S =

∫ t1

t0

∥∥∥ 12(vA + vB)×
−→
AB

∥∥∥ dt , (29)

where vA, vB are the velocity vectors of the endpoints. For vectors in R2 the norm in this
formula can be cancelled which gives rise to an even oriented area.

In the coordinate system (I, II ) of τ we obtain due to (14) and (11)

−→
AB =

(√
3 cos eAB ,

√
3 sin eAB

)
, vA =

(
dIA
dt

,
dIIA
dt

)
,

vB =

(
dIA
dt
−
√
3 sin eAB

d eAB
dt

,
dII

dt
+
√
3 cos eAB

d eAB
dt

)

and according to (12) and (13)

dS

dt
=
√
3

(
dIA
dt

sin eAB −
dIIA
dt

cos eAB

)
− 3

2

d eAB
dt

=
√
3 sin γ − 3

2

d eAB
dt

.

Eq. (16) and the derivation of (17) lead to

dS

dt
=

√
2(1 + 2 cos t)√
1 + cos t

− 3
√
2 cos t

2
√

(1 + cos t)(1 + 2 cos t)

which finally results in

dS

dt
=

2 + cos t√
2(1 + cos t)(1 + 2 cos t)

. (30)

After integration we obtain up to a constant k

S(t) =
1

2

[
arcsin

1− 4 cos t

3
− arcsin

1 + 5 cos t

3(1 + cos t)

]
+ k

and for the complete torse Ψ

SΨ = 8
[
S
(π
2

)
− S(0)

]
= 4

[
S

(
2π

3

)
− S(0)

]
= 4π . (31)

Theorem 5: The surface area of the Oloid equals that of the unit sphere.

The computation of the Oloid’s volume starts from (30): Each surface element of Ψ is
the base of a volume element forming a pyramid with apex O. Its altitude r has already been
computed in (25) as it equals the distance between O and the corresponding tangent plane.
Thus we obtain

dV =
r

3
dS =

(2 + cos t)2

12(1 + cos t)
√
1 + 2 cos t

dt . (32)

A numerical integration gives

VΨ = 8
[
V
(π
2

)
− V (0)

]
≈ 3.05241 . (33)
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