
REMARKS ON BRICARD'S FLEXIBLE OCTAHEDRA OF TYPE 3Hellmuth STACHELVienna University of TehnologyVienna, AUSTRIAABSTRACTThis paper treats exible polyhedra in the Eulidean 3-spae. It is shown how the exibility of Briard's ota-hedra of Type 3 an be onluded with the aid of Ivory'stheorem. Also other properties of this interesting exi-ble struture are presented.Key Words: Flexibility, polyhedra, Briard's otahedra,projetive geometry.1. INTRODUCTIONR. Briard's exible otahedra (Briard (1897), ompareWunderlih (1965) or Stahel (1987)) play an essentialrole in the theory of exible polyhedra. Most examplesof ontinuously exible polyhedra known until reent aresomehow based on these otahedra (see e.g. Connelly(1978) or Dewdney (1992), note Stahel (2000)).The �rst two types of Briard's otahedra admit self-symmetries: In Type 1 all pairs of opposite verties aresymmetri with respet to a ommon line, in Type 2 twopairs are symmetri with respet to a ommon planewhih passes through the remaining two verties. Wede�ne Briard's otahedra of Type 3 by the property ofbeing unsymmetri and nontrivially1 exible. Due toBriard (1897) Type 3 admits two at positions whihan be determined in the following way (Fig. 1):Let kAC , kAB be two di�erent irles with the ommonenterM , and let A1; A2 be two di�erent points outsidekAC and kAB . The tangent lines of kAB passing throughA1 or A2 de�ne a quadrilateral. We speify (B1; B2)as a pair of opposite verties.2 Then A1B1A2B2 is aquadrangle with the four sides A1B1, . . . , B2A1 tangentto kAB . In the same way we speify a seond quadrangleA1C1A2C2 tangent to the irle kAC . Then (A1; A2),(B1; B2) and (C1; C2) are the pairs of opposite vertiesof a exible otahedron O in a at position. The 8 faesof O are the triangles AiBjCk for any i; j; k 2 f1; 2g.We obtain a proper otahedron without self-symmetries1 At the trivially exible ases two `opposite' verties are o-iniding or two pairs of verties are aligned.2 When kAB happens to be tangent to the line A1A2 then thepair (B1; B2) is unique; one B-point is the point of ontat.

under following assumptions:(a) B1; : : : ; C2 are �nite;(b) A1; A2 are not aligned with M ;() the distanes A1M and A2M are di�erent.
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Figure 1: The at position of Type 3In the sequel a new proof for the exibility of this o-tahedron O is given. The proof is based on standardresults of Projetive Geometry and on Ivory's theorem.It works also in the limiting ase with one vertex at in-�nity whih gives rise to a new exible polyhedron witha prismati part (see Setion 5). The presented proof forthe exibility of Type 3 is { slightly modi�ed { also validin the ellipti and the hyperboli 3-spae. Some otherproperties of the partiular hexagon A1 : : : C2 of vertiesof O in the at position are presented in Setion 4.2. PROJECTIVE GEOMETRY OF THE CURVESOF SECOND CLASSWe reall a few results from Projetive Geometry in theplane: The tangent lines of a oni  onstitute a regularurve b of seond lass, i.e., their oordinates3 are thezeros of a regular quadrati funtion �(u; u), i.e., with3 Let x = (x0; x1; x2) be homogeneous point oordinates in the



a non-degenerate polar form4 �(u; v) for u; v 2 R3 . Asingular 2nd-lass urve is either the union bpPQ of twopenils of lines at the points P;Q, resp., or a single penilbpR with multipliity 2, a \repeated penil".A pair of non-zero vetors u; v with �(u; v) = 0 repre-sents two lines whih are onjugate with respet to b.For a given line v0R the set of all onjugate lines uRis either a penil of lines through the pole, or we have�(u; v0) = 0 for all u 2 R3 . In the latter ase v0 is in-luded in the radial of the singular bilinear form �, i.e.,the pole of v0R is indeterminate. In the ase bpPQ onlythe pole of the line PQ is indeterminate; for any otherline l the pole is the fourth harmoni onjugate to thepoint of intersetion l\PQ with respet to P;Q. In thease bpR for every line through R the pole is indetermi-nate while R is the pole of any other line.For any polar form �(u; v) there is a linear mappingL : R3 ! R3 suh that�(u; v) = u � L(v) (1)where the dot denotes the standard salar produt.Thus L(v0)R is the pole of the line v0R, and the radialof � equals the kernel of L.Any two di�erent urves b1;b2 of 2nd lass span a one-parametri linear system, the range R := [b1b2℄. Thepolar form of any b 2 R reads�(u; v) = �1�1(u; v) + �2�2(u; v); (�1; �2) 2 R2 ;provided, qi denotes the polar form of bi. In the generiase the range R onsists of all 2nd-lass urves throughthe four ommon lines of b1 and b2. For a line v0R thepoles with respet to all b 2 [b1b2℄ are represented by(�1L1(v0) + �2L2(v0))R: (2)A �rst example of a range is the set of irles with enterM . This range inludes the repeated penil bpM of di-ameters and the set bpI1I2 of isotropi lines, i.e., all linespassing through an absolute point I1 or I2. The homo-geneous artesian oordinates of these imaginary pointsread (0 : 1 : �i), i2 = �1.As for all onentri irles the tangent line at Ij is theasymptote IjM , this range is a speial example of a\ontat range" inluding all onis with two ommonline elements. The singular urves in suh a ontatrange are- the penil bpM of lines spanned by the ommon tangentlines (with multipliity 2) and- the set bpI1I2 of lines through the points of ontat.Another example of a range is the set of onfoal on-is. This range inludes the singular urve bpF1F2 withreal projetive plane. Then the line l given by the linear equationu0x0 + u1x1 + u2x2 = 0 has the homogeneous line oordinatesu = (u0; u1; u2). We write briey l = uR.4 =symmetri bilinear form.

the (real) foal points F1; F2 and again the set bpI1I2 ofisotropi lines.Any three seond-lass urves being not ontained ina single range span a two-parametri linear system S,whih has the struture of a projetive plane. Thismeans: Any two di�erent ranges R1;R2 � S share ex-atly one 2nd-lass urve. For any two di�erent urvesb1;b2 2 S the spanned range [b1 b2℄ is totally inludedin S.3. THE FLEXIBILITY OF TYPE 3Lemma 1 Let A1; : : : ; C2 be the verties of the at po-sition of an otahedron O of Type 3 | aording to theprevious onstrution (Fig. 1).Then the pairs of line penils bpA1A2 , bpB1B2 and bpC1C2span a two-parametri linear system S whih ontainsthe repeated penil bpM and the set bpI1I2 of isotropi lines.PSfrag replaements
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bpC1C2 bkABbkAC bkBCbbs be b0 bpI1I2[bpM bpI1I2 ℄[b bpI1I2 ℄Figure 2: The two-parametri system Sseen as a projetive planeProof: Due to the onstrution displayed in Fig. 1 therange [bpA1A2 bpB1B2 ℄ � S inludes the irle bkAB . Inthe same way the range [bpA1A2 bpC1C2 ℄ � S inludes theirle bkAC . From bkAB ; bkAC 2 S we onlude that therange [bkAB bkAC ℄ of onentri irles is a subset of S.And this range ontains the repeated penil bpM and theset bpI1I2 (ompare Fig. 2).S an also be spanned by bpA1A2 and the irles bkAB andbkAC . Hene S doesn't depend on the ambiguous hoieof the pairs (B1; B2) and (C1; C2).Consequenes of Lemma 1 are:Lemma 2 (i) With any oni b 2 S all onis onfoalto b are inluded in S.(ii) Also the quadrangle B1C1B2C2 is tangent to a ir-le kBC entered at M (see Fig. 4). This proves thatno pair of verties an be distinguished among (A1; A2),(B1; B2) and (C1; C2).



Proof: The seond item an be onluded in the fol-lowing way: The range [bpB1B2 bpC1C2 ℄ must interset therange [bpM bpI1I2 ℄ of onentri irles at a ommon urvebs. It is easy to see (Fig. 2) that bs must be di�erent fromboth, the penil bpM and the pair bpI1I2 of penils of lines.Hene bs is a irle entered at M .Lemma 3 For any oni  tangent to the sides ofA1B1A2B2 there is a onfoal oni e whih passesthrough C1 and C2. All the onis be belong to a on-tat range as they have the ommon tangent line CiMat Ci, i = 1; 2.Proof: For any oni  tangent to A1B1A2B2 its dual bis inluded in [bpA1A2 bpB1B2 ℄ � S. Therefore the range[b bpI1I2 ℄ of urves onfoal to b is ontained in S, too.There must be a urve be of intersetion with the ontatrange [bpM bpC1C2 ℄ of 2nd-lass urves through the lineelements (Ci;MCi), i = 1; 2. Again we an exludethat the singular urves bpM or bpC1C2 belong to [b bpI1I2 ℄.Hene be has the properties stated in Lemma 3.Theorem 1 [Briard (1897)℄ The otahedron O withgiven at position A1 : : : C2 is ontinuously exible.Proof: We start with realling foal properties of a one-sheet hyperboloid � with the equation�: x2a2 + y2b2 � z22 = 1 for a > b > 0;  > 0 :There is an aÆne transformation�1 : (x; y; z) 7! �pa2 + 2=a; pb2 + 2=b; 0�whih maps � into the plane z = 0 of symmetry. Inpartiular eah generator of � is mapped isometriallyonto a tangent line of the foal ellipsee : x2a2 + 2 + y2b2 + 2 � 1 = z = 0of �. There is a seond aÆne transformation�2 : (x; y; z) 7! �pa2 � b2=a; 0; p2 + b2=�mapping � into y = 0 while the generators are trans-formed isometrially into tangent lines of the foal hy-perbola 5h : x2a2 � b2 � z22 + b2 � 1 = y = 0:e and h are onfoal to the orresponding oplanar se-tion of �. Note that tangent lines of the foal urves do5 The two aÆne transformations �1; �2 are limiting ases of aontinuous set of aÆne transformations between � and any onfo-al one-sheet hyperboloid. These mappings are length-preservingfor all generators of �. This is the basis for Henrii's exible modelof a one-sheet hyperboloid with linked rods representing the twosets of generators (see e.g. Hilbert (1996) or Stahel (1996)). Theat limiting positions of this model onsist of tangent lines eitherof the foal ellipse e or the foal hyperbola h.

never interset the oplanar prinipal setions; e.g., thefoal ellipse e lies in the exterior of �.Aording to Ivory's theorem (see e.g. Stahel (2002))for any two points P;Q 2 � the following distanes areequal:P �i(Q) = Q�i(P ):PSfrag replaements A01
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Figure 3: Proving the exibility of Type 3with Ivory's theoremFor proving the existene of a ontinuous set of otahe-dra being isometri to the at position we note Lemma 3whih states: There is a ontinuous set of onis  tan-gent to A1B1A2B2 with a onfoal e passing throughC1 and C2. We see eah e as a prinipal setion of aone-sheet hyperboloid � and  as a oplanar foal urve(see Fig. 3).The statement above reveals that there is a quadrangleA01B01A02B02 with sides on � whih is mapped by theaÆne transformation �1 or �2 onto A1B1A2B2 whilethe lengths of all sides are preserved.6 Under the same�i the verties C1; C2 2 e are mapped onto C 01; C 02 2 ,and Ivory's theorem onludes the proof that the spatialotahedron A01 : : : C 02 is isometri to the at position.However, two items remain to be proved:� e needs to be inside the foal urve , to say, notangent line of  may interset e, and�  and e must be of the same type.For proving this, we note that there is a oni 0 tangentto A1B1A2B2 and passing through both line elements(Ci;MCi), i = 1; 2. Fig. 2 reveals6 A01B01A02B02 2 � is unique only up to a reetion in the planeof the prinipal setion e.



fb0g = [bpA1A2 bpB1B2 ℄ \ [bpM bpC1C2 ℄:Now we start with  = e = 0 and use ontinuity argu-ments:Let t denote any side of A1B1A2B2. While the 2nd-lassurve be varies in the ontat range [bpM bpC1C2 ℄ the poleT of t with respet to be traes a line t0 due to (2). Forbe = b0 we obtain T as the point T0 of ontat between tand 0. For be = bpM the pole T oinides with M .Now it depends on the hoie of diretion when startingfrom 0: If T moves along t0 torwards inside 0, i.e.,if T; T0 are not separated by M and S = t0 \ C1C2,then the orresponding oni e will not interset t. Thisresults from properties of the polarity with respet to eand the involution of onjugate points on t0.So these e are inside the onfoal  2 [bpA1A2 bpB1B2 ℄.And in a neighborhood of 0 neither the (aÆne) typeof e nor that of  will hange. It turns out that bothonditions remain valid until T reahes the line C1C2at S with be = bpC1C2 . This is the limiting position withthe seond at position; the orresponding hyperboloid� degenerates into the foal oni of 0.4. PROPERTIES OF THE HEXAGON A1 : : : C2Let ai; bi; i denote the lines whih onnet M withAi; Bi; Ci, resp., for i = 1; 2 (see Fig. 4).PSfrag replaements
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Figure 4: Symmetry properties of the atposition A1 : : : C2Lemma 4 The pairs (a1; a2), (b1; b2) and (1; 2) oflines through M have ommon axes s1; s2 of symmetry.At eah of the six verties (e.g. at Ai) the onnetinglines with the other pairs (B1; B2 and C1; C2) are sym-metri with respet to the line through M .Proof: The symmetry atM (see Fig. 4) is a onsequeneof Desargues' involution theorem: For the urves of the

range [bpA1A2 bpB1B2 ℄ the tangent lines passing throughM onstitute an involution inluding the pair MI1 7!MI2. Hene pairs of this involution are symmetri withrespet to two perpendiular lines s1; s2. As all urvesof a ontat range through bpM share the tangent linesthrough M , the involution inludes the pairs of tangentlines for all urves in S n bpM .The symmetry at the verties is obvious beause of theirles kAB ; kAC ; kBC .Lemma 5 Let 0i denote the line through Ci perpendi-ular to i = MCi (see Fig. 5). Then i and 0i intersetthe lines A1A2 and B1B2 at points being harmoni withrespet to the inident pair of opposite verties.Proof: S an be spanned by bpM , bpA1A2 and bpI1I2 .Let �1; �2; �3 be the orresponding polar forms and letL1; L2; L3 be the linear mappings due to (1). Then forthe line l = vR the pole with respet to any b 2 S is(�1L1(v) + �2L2(v) + �3L3(v))R:When l passes through M , we obtain L1(v) = o. There-fore the poles trae a line l0. Due to the polarity withrespet to bpI1I2 the line l0 is perpendiular to l. Onthe other hand l0 passes through the pole �(l) (ompare�(1) in Fig. 5) of l with respet to bpA1A2 . Withouthanging l0 we an replae bpA1A2 by bpB1B2 2 S.PSfrag replaements
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Figure 5: Strophoid 3 as the lous of vertiesTheorem 2 In the at position of Type 3 the vertiesA1; : : : ; C2 are loated on a rational ubi 3. This u-bi has a node at M with perpendiular tangent lines



s1; s2, and 3 passes through the absolute points I1; I2.Therefore 3 is a `strophoidal' ubi with the followingadditional properties:(i) 3 is the lous of foal points of all onis inludedin S.(ii) 3 is the lous of points of ontat for tangent lineswhih an be drawn from M to any oni of S.(iii) 3 is the pedal urve of M with respet to theparabola p whih is the envelope of the axes of sym-metry for all non-irular onis inluded in S.(iv) The pairs of opposite verties (A1; A2), (B1; B2)and (C1; C2) on 3 are loated on lines for whihthe pedal point of M is again a point of 3.Proof: We de�ne 3 als the set of intersetion pointsl \ l0 for any line l through M and the orresponding`onjugate' l0 with respet to all b 2 S. If b is a oniwith foal points F1; F2, then due to Lemma 2 also bpF1F2is inluded in S. And for l = MFi the orrespondingl0 is the perpendiular line through Fi whih impliesFi 2 3.7 The harmoni properties ited in Lemma 5reveal that the lines l0 onnet orresponding points ofa projetivity between A1A2 and the line at in�nity.Hene the lines l0 are tangent to a parabola p,8 andl \ l0 is the pedal point of M on the tangent line l0 ofp. From the projetive generation of p we onlude thatalso A1A2 is tangent to p. Therefore the pedal point ofM on A1A2 belongs to 3, too. Finally, bpA1A2 an bereplaed by foal points of any other non-irular onib 2 S.5. CONCLUDING REMARKS ON TYPE 3The proof of the exibility of Type 3 works in the sameway in the projetive models of the ellipti and the hy-perboli 3-spae. The only di�erene is that bpI1I2 has tobe replaed by the dual of the absolute oni. So, alsoin these spaes there exist at least three types of exibleotahedra.We an speify A1; A2 and M in Fig. 1 suh that B1 isa point at in�nity. Ivory's theorem reveals also in thisase a exible polyhedron onsisting of a pyramid anda prism. After reeting the pyramid in a plane per-pendiular to the prism we obtain a exible polyhedrononsisting of two pyramids and a ylindrial middle part.A reently presented onverse of Ivory's theorem(Stahel (2002)) allows to give a short new proof for the7 In R. Briard (1927) an approah to Type 3 is presented viaproperties of a \strophoidal" spatial ubi. This is exatly theanalogon of 3 in non-at positions of the otahedron O.8 p is the soalled Chalses' parabola assoiated to the penilbpM under the birational transformation of orthogonally onjugatelines with respet to any oni b 2 S (ompare Dingeldey (1903)).
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