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ABSTRACT

This paper treats flexible polyhedra in the Euclidean 3-
space. It is shown how the flexibility of Bricard’s octa-
hedra of Type 3 can be concluded with the aid of Ivory’s
theorem. Also other properties of this interesting flexi-
ble structure are presented.
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1. INTRODUCTION

R. Bricard’s flexible octahedra (Bricard (1897), compare
Wunderlich (1965) or Stachel (1987)) play an essential
role in the theory of flexible polyhedra. Most examples
of continuously flexible polyhedra known until recent are
somehow based on these octahedra (see e.g. Connelly
(1978) or Dewdney (1992), note Stachel (2000)).

The first two types of Bricard’s octahedra admit self-
symmetries: In Type 1 all pairs of opposite vertices are
symmetric with respect to a common line, in Type 2 two
pairs are symmetric with respect to a common plane
which passes through the remaining two vertices. We
define Bricard’s octahedra of Type 3 by the property of
being unsymmetric and nontrivially! flexible. Due to
Bricard (1897) Type 3 admits two flat positions which
can be determined in the following way (Fig.1):

Let kac, kap be two different circles with the common
center M, and let Aq, As be two different points outside
kac and kap. The tangent lines of k4 p passing through
Ay or As define a quadrilateral. We specify (Bi, Ba)
as a pair of opposite vertices.?> Then A;B;A>B> is a
quadrangle with the four sides A, By, ..., By A; tangent
to kap. In the same way we specify a second quadrangle
A1Cy1 AsCy tangent to the circle kac. Then (Ag, As),
(B1,Bz) and (C4,Cy) are the pairs of opposite vertices
of a flexible octahedron O in a flat position. The 8 faces
of O are the triangles A;B;Cy, for any i,j,k € {1,2}.

We obtain a proper octahedron without self-symmetries

L At the trivially flexible cases two ‘opposite’ vertices are co-
inciding or two pairs of vertices are aligned.

2 When k4p happens to be tangent to the line A; A then the
pair (B1, B2) is unique; one B-point is the point of contact.

under following assumptions:
(a) By,...,Cy are finite;
(b) Ay, Ay are not aligned with M;
(c) the distances Ay M and A, M are different.

Figure 1: The flat position of Type 3

In the sequel a new proof for the flexibility of this oc-
tahedron O is given. The proof is based on standard
results of Projective Geometry and on Ivory’s theorem.
It works also in the limiting case with one vertex at in-
finity which gives rise to a new flexible polyhedron with
a prismatic part (see Section 5). The presented proof for
the flexibility of Type 3 is — slightly modified — also valid
in the elliptic and the hyperbolic 3-space. Some other
properties of the particular hexagon A; ...C5 of vertices
of O in the flat position are presented in Section 4.

2. PROJECTIVE GEOMETRY OF THE CURVES
OF SECOND CLASS

We recall a few results from Projective Geometry in the
plane: The tangent lines of a conic ¢ constitute a regular
curve ¢ of second class, i.e., their coordinates® are the
zeros of a regular quadratic function §(u,u), i.e., with

3 Let x = (z0,21,T2) be homogeneous point coordinates in the



a non-degenerate polar form* B(u,v) for u,v € R®. A
singular ond_class curve is either the union Dppg of two
pencils of lines at the points P, (), resp., or a single pencil
pr with multiplicity 2, a “repeated pencil”.

A pair of non-zero vectors u,v with 8(u,v) = 0 repre-
sents two lines which are conjugate with respect to c.
For a given line vgR the set of all conjugate lines uR
is either a pencil of lines through the pole, or we have
B(u,vg) = 0 for all u € R®. In the latter case v is in-
cluded in the radical of the singular bilinear form 3, i.e.,
the pole of voR is indeterminate. In the case ppg only
the pole of the line PQ is indeterminate; for any other
line [ the pole is the fourth harmonic conjugate to the
point of intersection [N PQ with respect to P, Q. In the
case pg for every line through R the pole is indetermi-
nate while R is the pole of any other line.

For any polar form ((u,v) there is a linear mapping
L:R? — R3 such that

Blu,v) =u-L(v) (1)
where the dot denotes the standard scalar product.

Thus L(vo)R is the pole of the line voR, and the radical
of 8 equals the kernel of L.

Any two different curves ¢, ¢ of 2" class span a one-
parametric linear system, the range R := [¢i¢2]. The
polar form of any ¢ € R reads

Bu,v) = A1 Bi(u,v) + AaBa(u,v), (M, A2) € R?,

provided, ¢; denotes the polar form of ¢;. In the generic
case the range R consists of all 2"%-class curves through
the four common lines of ¢; and ¢,. For a line vgR the
poles with respect to all ¢ € [¢;¢»] are represented by

()\1 Ll (Vo) + )\2L2 (Vo)) IR (2)

A first example of a range is the set of circles with center
M. This range includes the repeated pencil pys of di-
ameters and the set pr, 7, of isotropic lines, i.e., all lines
passing through an absolute point I, or Is. The homo-
geneous cartesian coordinates of these imaginary points
read (0:1:4i), 2 = —1.

As for all concentric circles the tangent line at I; is the
asymptote I; M, this range is a special example of a
“contact range” including all conics with two common
line elements. The singular curves in such a contact
range are

- the pencil pys of lines spanned by the common tangent
lines (with multiplicity 2) and

- the set py, 1, of lines through the points of contact.

Another example of a range is the set of confocal con-
ics. This range includes the singular curve pp, p, with

real projective plane. Then the line [ given by the linear equation
uoxo + ui1x1 + uzx2 = 0 has the homogeneous line coordinates
u = (uo,ur,u2). We write briefly [ = uR.

4 = symmetric bilinear form.

the (real) focal points Fiy, F» and again the set py, s, of
isotropic lines.

Any three second-class curves being not contained in
a single range span a two-parametric linear system S,
which has the structure of a projective plane. This
means: Any two different ranges Ry, Ro C S share ex-
actly one 2"d-class curve. For any two different curves
C1,¢62 € S the spanned range [¢; ¢3] is totally included
in S.

3. THE FLEXIBILITY OF TYPE 3

Lemma 1 Let Aq,...,Cs be the vertices of the flat po-
sition of an octahedron O of Type 8 — according to the
previous construction (Fig. 1).

Then the pairs of line pencils pa,a,, DB, B, and Pc,c,
span a two-parametric linear system S which contains

the repeated pencil par and the set pr, 1, of isotropic lines.

ksc kap ﬁgz
PR [Pm D1, 15)
LA o~ o~ o~ =
c [C pn 72]

Figure 2: The two-parametric system S
seen as a projective plane

Proof: Due to the construction displayed in Fig. 1 the
range [Da, 4, PB,B,] C &S includes the circle k4p. In
the same way the range [pa, 4, Po,c,] C S includes the
circle k}gc- AFrom kaB,kac € S we conclude that the
range [kap kac] of concentric circles is a subset of S.
And this range contains the repeated pencil pys and the
set pr, 1, (compare Fig. 2). R

§ can also be spanned by pa, 4, and the circles k4 p and
kac. Hence S doesn’t depend on the ambiguous choice
of the pairs (By, Bs) and (C1, Cs). i

Consequences of Lemma 1 are:

Lemma 2 (i) With any conic ¢ € S all conics confocal
to ¢ are included in S.

(i) Also the quadrangle B;C1B2Cy is tangent to a cir-
cle kpc centered at M (see Fig.4). This proves that

no pair of vertices can be distinguished among (A1, As),
(B1 s Bg) and (Cl, 02) .



Proof: The second item can be concluded in the fol-
lowing way: The range [pB, B, Pc,c,] must intersect the
range [pam Pr, 1,] of concentric circles at a common curve
5. It is easy to see (Fig.2) that § must be different from
both, the pencil pys and the pair py, 5, of pencils of lines.
Hence s is a circle centered at M. |

Lemma 3 For any conic ¢ tangent to the sides of
A1B1A>By there is a confocal conic ¢ which passes
through Cy and Cs. All the conics ¢ belong to a con-
tact range as they have the common tangent line C; M
at Ci, i =1,2.

Proof: For any conic ¢ tangent to A; By A3 Bs its dual ¢
is included in [pa, 4, PB,B,] C S. Therefore the range
[¢ P1, 1] of curves confocal to ¢ is contained in S, too.
There must be a curve ¢ of intersection with the contact
range [pa Poyc.) of 2"d-class curves through the line
elements (C;, MC;), i = 1,2. Again we can exclude
that the singular curves pys or pc, ¢, belong to [€ P, 1,].
Hence ¢ has the properties stated in Lemma 3. m|

Theorem 1 [Bricard (1897)] The octahedron O with
given flat position A; ...Cq is continuously flexible.

Proof: We start with recalling focal properties of a one-

sheet hyperboloid ® with the equation

$2 y2 22
P §+b_2_c_2:1 fOI“a>b>0,C>0:

There is an affine transformation
ar: (z,y,2) — (\/a2 +c2/a, Vb2 +2/b, 0)

which maps @ into the plane z = 0 of symmetry. In
particular each generator of ® is mapped isometrically

onto a tangent line of the focal ellipse

22 y?
e: + —1=2z2=0
a?+c2 b2+

of ®. There is a second affine transformation
a: (z,y,2) =» (Va? —b?/a, 0, V2 +b%/c)

mapping ® into y = 0 while the generators are trans-
formed isometrically into tangent lines of the focal hy-
perbola®

z2 22

h: — —1=y=0.
@ 24 Y
e and h are confocal to the corresponding coplanar sec-
tion of ®. Note that tangent lines of the focal curves do

5 The two affine transformations a1, as are limiting cases of a
continuous set of affine transformations between ® and any confo-
cal one-sheet hyperboloid. These mappings are length-preserving
for all generators of ®. This is the basis for Henrici’s flexible model
of a one-sheet hyperboloid with linked rods representing the two
sets of generators (see e.g. Hilbert (1996) or Stachel (1996)). The
flat limiting positions of this model consist of tangent lines either
of the focal ellipse e or the focal hyperbola h.

never intersect the coplanar principal sections; e.g., the
focal ellipse e lies in the exterior of ®.

According to Ivory’s theorem (see e.g. Stachel (2002))
for any two points P,Q € ® the following distances are
equal:

Pai(Q) = Qay(P).

Figure 3: Proving the flexibility of Type 3
with Ivory’s theorem

For proving the existence of a continuous set of octahe-
dra being isometric to the flat position we note Lemma 3
which states: There is a continuous set of conics ¢ tan-
gent to A; By A; By with a confocal ¢ passing through
C; and Cy. We see each ¢ as a principal section of a
one-sheet hyperboloid ® and ¢ as a coplanar focal curve
(see Fig.3).

The statement above reveals that there is a quadrangle
A Bj Ay Bl with sides on ® which is mapped by the
affine transformation a; or as onto A;BiAsB> while
the lengths of all sides are preserved. Under the same
a; the vertices C,C5y € ¢ are mapped onto C},C} € ¢,
and Ivory’s theorem concludes the proof that the spatial
octahedron A] ...C} is isometric to the flat position.

However, two items remain to be proved:

e ¢ needs to be inside the focal curve ¢, to say, no
tangent line of ¢ may intersect ¢, and

e ¢ and ¢ must be of the same type.
For proving this, we note that there is a conic ¢y tangent

to A;B1As By and passing through both line elements
(Ci, MC;), i =1,2. Fig. 2 reveals

6 A} B} A}, B}, € ® is unique only up to a reflection in the plane
of the principal section ¢.



{80} = [ﬁz‘hAz ﬁB1Bz] n [Z/)\M ﬁOIOQ]'

Now we start with ¢ = ¢ = ¢g and use continuity argu-
ments:

Let t denote any side of A; B; A> By. While the ond_class
curve ¢ varies in the contact range [py pc,c,] the pole
T of t with respect to ¢ traces a line t' due to (2). For
¢ = ¢o we obtain T' as the point Ty of contact between ¢
and ¢g. For ¢ = pys the pole T coincides with M.

Now it depends on the choice of direction when starting
from co: If T moves along t' torwards inside ¢y, i.e.,
if T,Ty are not separated by M and S = ' N C1Cs,
then the corresponding conic ¢ will not intersect ¢. This
results from properties of the polarity with respect to ¢
and the involution of conjugate points on ¢'.

So these ¢ are inside the confocal ¢ € [pa, 4, DB, B
And in a neighborhood of ¢ neither the (affine) type
of ¢ nor that of ¢ will change. It turns out that both
conditions remain valid until 7' reaches the line C;C»
at S with ¢ = pe,¢,. This is the limiting position with
the second flat position; the corresponding hyperboloid
® degenerates into the focal conic of ¢g. O

4. PROPERTIES OF THE HEXAGON 4, ...C,

Let a;,b;,c; denote the lines which connect M with
A;, B;, Cy, resp., for i = 1,2 (see Fig. 4).

Figure 4: Symmetry properties of the flat
pOSitiOn A1 . CQ

Lemma 4 The pairs (a1,a2), (b1,b2) and (ci,ca) of
lines through M have common azxes s1,Ss of symmetry.
At each of the siz vertices (e.g. at A;) the connecting
lines with the other pairs (By, Bs and Cy,Cs) are sym-
metric with respect to the line through M.

Proof: The symmetry at M (see Fig.4) is a consequence
of Desargues’ involution theorem: For the curves of the

range [Da,a, PB,B,] the tangent lines passing through
M constitute an involution including the pair MI; —
M 5. Hence pairs of this involution are symmetric with
respect to two perpendicular lines sy, ss. As all curves
of a contact range through py; share the tangent lines
through M, the involution includes the pairs of tangent
lines for all curves in S\ pas.

The symmetry at the vertices is obvious because of the
circles kap, kac, kpo. O

Lemma 5 Let ¢ denote the line through C; perpendic-
ular to ¢; = MC; (see Fig.5). Then c¢; and ¢} intersect
the lines A1 As and By Bs at points being harmonic with
respect to the incident pair of opposite vertices.

Proof: S can be spanned by Dar, pa,a, and Pr,1,-
Let 81, B2, 83 be the corresponding polar forms and let
Ly, Lo, L3 be the linear mappings due to (1). Then for
the line | = vR the pole with respect to any ¢ € S is

(>\1L1 (V) + )\2[12 (V) + >\3L3(V)) R.

When [ passes through M, we obtain L;(v) = o. There-
fore the poles trace a line I’. Due to the polarity with
respect to pr,j, the line I’ is perpendicular to . On
the other hand !’ passes through the pole 7(l) (compare
m(c1) in Fig.5) of | with respect to pa,a,. Without
changing I’ we can replace pa, 4, by PB,B, € S. O

Figure 5: Strophoid c3 as the locus of vertices

Theorem 2 In the flat position of Type 3 the vertices
Ay, ...,Cy are located on a rational cubic c3. This cu-

bic has a node at M with perpendicular tangent lines



$1, 82, and cg passes through the absolute points I, 1.
Therefore c3 is a ‘strophoidal’ cubic with the following
additional properties:

(i) cs is the locus of focal points of all conics included
inS.

(ii) cs is the locus of points of contact for tangent lines
which can be drawn from M to any conic of S.

(11i) c3 is the pedal curve of M with respect to the
parabola p which is the envelope of the axes of sym-
metry for all non-circular conics included in S.

(iv) The pairs of opposite vertices (A1, Aa), (B, Ba)
and (C1,C3) on c3 are located on lines for which
the pedal point of M is again a point of c3.

Proof: We define c3 als the set of intersection points
[N for any line | through M and the corresponding
‘conjugate’ I’ with respect to all ¢ € S. If ¢ is a conic
with focal points Fy, Fy, then due to Lemma 2 also pg, ,
is included in S. And for [ = MF; the corresponding
" is the perpendicular line through F; which implies
F; € ¢3.7 The harmonic properties cited in Lemma 5
reveal that the lines I’ connect corresponding points of
a projectivity between A;As and the line at infinity.
Hence the lines I’ are tangent to a parabola p,® and
I N1l is the pedal point of M on the tangent line I’ of
p. From the projective generation of p we conclude that
also Aj A, is tangent to p. Therefore the pedal point of
M on A;As belongs to c3, too. Finally, pa, 4, can be
replaced by focal points of any other non-circular conic
ces. O

5. CONCLUDING REMARKS ON TYPE 3

The proof of the flexibility of Type 3 works in the same
way in the projective models of the elliptic and the hy-
perbolic 3-space. The only difference is that py, 1, has to
be replaced by the dual of the absolute conic. So, also
in these spaces there exist at least three types of flexible
octahedra.

We can specify Ay, Ay and M in Fig.1 such that Bj is
a point at infinity. Ivory’s theorem reveals also in this
case a flexible polyhedron consisting of a pyramid and
a prism. After reflecting the pyramid in a plane per-
pendicular to the prism we obtain a flexible polyhedron
consisting of two pyramids and a cylindrical middle part.

A recently presented converse of Ivory’s theorem
(Stachel (2002)) allows to give a short new proof for the

7 In R. Bricard (1927) an approach to Type 3 is presented via
properties of a “strophoidal” spatial cubic. This is exactly the
analogon of ¢3 in non-flat positions of the octahedron O.

8 p is the socalled Chalses’ parabola associated to the pencil
P under the birational transformation of orthogonally conjugate
lines with respect to any conic ¢ € S (compare Dingeldey (1903)).

fact that Type 3 is the only flexible octahedron with a
flat position — apart from trivial cases.
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