
REMARKS ON BRICARD'S FLEXIBLE OCTAHEDRA OF TYPE 3Hellmuth STACHELVienna University of Te
hnologyVienna, AUSTRIAABSTRACTThis paper treats 
exible polyhedra in the Eu
lidean 3-spa
e. It is shown how the 
exibility of Bri
ard's o
ta-hedra of Type 3 
an be 
on
luded with the aid of Ivory'stheorem. Also other properties of this interesting 
exi-ble stru
ture are presented.Key Words: Flexibility, polyhedra, Bri
ard's o
tahedra,proje
tive geometry.1. INTRODUCTIONR. Bri
ard's 
exible o
tahedra (Bri
ard (1897), 
ompareWunderli
h (1965) or Sta
hel (1987)) play an essentialrole in the theory of 
exible polyhedra. Most examplesof 
ontinuously 
exible polyhedra known until re
ent aresomehow based on these o
tahedra (see e.g. Connelly(1978) or Dewdney (1992), note Sta
hel (2000)).The �rst two types of Bri
ard's o
tahedra admit self-symmetries: In Type 1 all pairs of opposite verti
es aresymmetri
 with respe
t to a 
ommon line, in Type 2 twopairs are symmetri
 with respe
t to a 
ommon planewhi
h passes through the remaining two verti
es. Wede�ne Bri
ard's o
tahedra of Type 3 by the property ofbeing unsymmetri
 and nontrivially1 
exible. Due toBri
ard (1897) Type 3 admits two 
at positions whi
h
an be determined in the following way (Fig. 1):Let kAC , kAB be two di�erent 
ir
les with the 
ommon
enterM , and let A1; A2 be two di�erent points outsidekAC and kAB . The tangent lines of kAB passing throughA1 or A2 de�ne a quadrilateral. We spe
ify (B1; B2)as a pair of opposite verti
es.2 Then A1B1A2B2 is aquadrangle with the four sides A1B1, . . . , B2A1 tangentto kAB . In the same way we spe
ify a se
ond quadrangleA1C1A2C2 tangent to the 
ir
le kAC . Then (A1; A2),(B1; B2) and (C1; C2) are the pairs of opposite verti
esof a 
exible o
tahedron O in a 
at position. The 8 fa
esof O are the triangles AiBjCk for any i; j; k 2 f1; 2g.We obtain a proper o
tahedron without self-symmetries1 At the trivially 
exible 
ases two `opposite' verti
es are 
o-in
iding or two pairs of verti
es are aligned.2 When kAB happens to be tangent to the line A1A2 then thepair (B1; B2) is unique; one B-point is the point of 
onta
t.

under following assumptions:(a) B1; : : : ; C2 are �nite;(b) A1; A2 are not aligned with M ;(
) the distan
es A1M and A2M are di�erent.
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Figure 1: The 
at position of Type 3In the sequel a new proof for the 
exibility of this o
-tahedron O is given. The proof is based on standardresults of Proje
tive Geometry and on Ivory's theorem.It works also in the limiting 
ase with one vertex at in-�nity whi
h gives rise to a new 
exible polyhedron witha prismati
 part (see Se
tion 5). The presented proof forthe 
exibility of Type 3 is { slightly modi�ed { also validin the ellipti
 and the hyperboli
 3-spa
e. Some otherproperties of the parti
ular hexagon A1 : : : C2 of verti
esof O in the 
at position are presented in Se
tion 4.2. PROJECTIVE GEOMETRY OF THE CURVESOF SECOND CLASSWe re
all a few results from Proje
tive Geometry in theplane: The tangent lines of a 
oni
 
 
onstitute a regular
urve b
 of se
ond 
lass, i.e., their 
oordinates3 are thezeros of a regular quadrati
 fun
tion �(u; u), i.e., with3 Let x = (x0; x1; x2) be homogeneous point 
oordinates in the



a non-degenerate polar form4 �(u; v) for u; v 2 R3 . Asingular 2nd-
lass 
urve is either the union bpPQ of twopen
ils of lines at the points P;Q, resp., or a single pen
ilbpR with multipli
ity 2, a \repeated pen
il".A pair of non-zero ve
tors u; v with �(u; v) = 0 repre-sents two lines whi
h are 
onjugate with respe
t to b
.For a given line v0R the set of all 
onjugate lines uRis either a pen
il of lines through the pole, or we have�(u; v0) = 0 for all u 2 R3 . In the latter 
ase v0 is in-
luded in the radi
al of the singular bilinear form �, i.e.,the pole of v0R is indeterminate. In the 
ase bpPQ onlythe pole of the line PQ is indeterminate; for any otherline l the pole is the fourth harmoni
 
onjugate to thepoint of interse
tion l\PQ with respe
t to P;Q. In the
ase bpR for every line through R the pole is indetermi-nate while R is the pole of any other line.For any polar form �(u; v) there is a linear mappingL : R3 ! R3 su
h that�(u; v) = u � L(v) (1)where the dot denotes the standard s
alar produ
t.Thus L(v0)R is the pole of the line v0R, and the radi
alof � equals the kernel of L.Any two di�erent 
urves b
1;b
2 of 2nd 
lass span a one-parametri
 linear system, the range R := [b
1b
2℄. Thepolar form of any b
 2 R reads�(u; v) = �1�1(u; v) + �2�2(u; v); (�1; �2) 2 R2 ;provided, qi denotes the polar form of b
i. In the generi

ase the range R 
onsists of all 2nd-
lass 
urves throughthe four 
ommon lines of b
1 and b
2. For a line v0R thepoles with respe
t to all b
 2 [b
1b
2℄ are represented by(�1L1(v0) + �2L2(v0))R: (2)A �rst example of a range is the set of 
ir
les with 
enterM . This range in
ludes the repeated pen
il bpM of di-ameters and the set bpI1I2 of isotropi
 lines, i.e., all linespassing through an absolute point I1 or I2. The homo-geneous 
artesian 
oordinates of these imaginary pointsread (0 : 1 : �i), i2 = �1.As for all 
on
entri
 
ir
les the tangent line at Ij is theasymptote IjM , this range is a spe
ial example of a\
onta
t range" in
luding all 
oni
s with two 
ommonline elements. The singular 
urves in su
h a 
onta
trange are- the pen
il bpM of lines spanned by the 
ommon tangentlines (with multipli
ity 2) and- the set bpI1I2 of lines through the points of 
onta
t.Another example of a range is the set of 
onfo
al 
on-i
s. This range in
ludes the singular 
urve bpF1F2 withreal proje
tive plane. Then the line l given by the linear equationu0x0 + u1x1 + u2x2 = 0 has the homogeneous line 
oordinatesu = (u0; u1; u2). We write brie
y l = uR.4 =symmetri
 bilinear form.

the (real) fo
al points F1; F2 and again the set bpI1I2 ofisotropi
 lines.Any three se
ond-
lass 
urves being not 
ontained ina single range span a two-parametri
 linear system S,whi
h has the stru
ture of a proje
tive plane. Thismeans: Any two di�erent ranges R1;R2 � S share ex-a
tly one 2nd-
lass 
urve. For any two di�erent 
urvesb
1;b
2 2 S the spanned range [b
1 b
2℄ is totally in
ludedin S.3. THE FLEXIBILITY OF TYPE 3Lemma 1 Let A1; : : : ; C2 be the verti
es of the 
at po-sition of an o
tahedron O of Type 3 | a

ording to theprevious 
onstru
tion (Fig. 1).Then the pairs of line pen
ils bpA1A2 , bpB1B2 and bpC1C2span a two-parametri
 linear system S whi
h 
ontainsthe repeated pen
il bpM and the set bpI1I2 of isotropi
 lines.PSfrag repla
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 bpI1I2 ℄Figure 2: The two-parametri
 system Sseen as a proje
tive planeProof: Due to the 
onstru
tion displayed in Fig. 1 therange [bpA1A2 bpB1B2 ℄ � S in
ludes the 
ir
le bkAB . Inthe same way the range [bpA1A2 bpC1C2 ℄ � S in
ludes the
ir
le bkAC . From bkAB ; bkAC 2 S we 
on
lude that therange [bkAB bkAC ℄ of 
on
entri
 
ir
les is a subset of S.And this range 
ontains the repeated pen
il bpM and theset bpI1I2 (
ompare Fig. 2).S 
an also be spanned by bpA1A2 and the 
ir
les bkAB andbkAC . Hen
e S doesn't depend on the ambiguous 
hoi
eof the pairs (B1; B2) and (C1; C2).Consequen
es of Lemma 1 are:Lemma 2 (i) With any 
oni
 b
 2 S all 
oni
s 
onfo
alto b
 are in
luded in S.(ii) Also the quadrangle B1C1B2C2 is tangent to a 
ir-
le kBC 
entered at M (see Fig. 4). This proves thatno pair of verti
es 
an be distinguished among (A1; A2),(B1; B2) and (C1; C2).



Proof: The se
ond item 
an be 
on
luded in the fol-lowing way: The range [bpB1B2 bpC1C2 ℄ must interse
t therange [bpM bpI1I2 ℄ of 
on
entri
 
ir
les at a 
ommon 
urvebs. It is easy to see (Fig. 2) that bs must be di�erent fromboth, the pen
il bpM and the pair bpI1I2 of pen
ils of lines.Hen
e bs is a 
ir
le 
entered at M .Lemma 3 For any 
oni
 
 tangent to the sides ofA1B1A2B2 there is a 
onfo
al 
oni
 e
 whi
h passesthrough C1 and C2. All the 
oni
s be
 belong to a 
on-ta
t range as they have the 
ommon tangent line CiMat Ci, i = 1; 2.Proof: For any 
oni
 
 tangent to A1B1A2B2 its dual b
is in
luded in [bpA1A2 bpB1B2 ℄ � S. Therefore the range[b
 bpI1I2 ℄ of 
urves 
onfo
al to b
 is 
ontained in S, too.There must be a 
urve be
 of interse
tion with the 
onta
trange [bpM bpC1C2 ℄ of 2nd-
lass 
urves through the lineelements (Ci;MCi), i = 1; 2. Again we 
an ex
ludethat the singular 
urves bpM or bpC1C2 belong to [b
 bpI1I2 ℄.Hen
e be
 has the properties stated in Lemma 3.Theorem 1 [Bri
ard (1897)℄ The o
tahedron O withgiven 
at position A1 : : : C2 is 
ontinuously 
exible.Proof: We start with re
alling fo
al properties of a one-sheet hyperboloid � with the equation�: x2a2 + y2b2 � z2
2 = 1 for a > b > 0; 
 > 0 :There is an aÆne transformation�1 : (x; y; z) 7! �pa2 + 
2=a; pb2 + 
2=b; 0�whi
h maps � into the plane z = 0 of symmetry. Inparti
ular ea
h generator of � is mapped isometri
allyonto a tangent line of the fo
al ellipsee : x2a2 + 
2 + y2b2 + 
2 � 1 = z = 0of �. There is a se
ond aÆne transformation�2 : (x; y; z) 7! �pa2 � b2=a; 0; p
2 + b2=
�mapping � into y = 0 while the generators are trans-formed isometri
ally into tangent lines of the fo
al hy-perbola 5h : x2a2 � b2 � z2
2 + b2 � 1 = y = 0:e and h are 
onfo
al to the 
orresponding 
oplanar se
-tion of �. Note that tangent lines of the fo
al 
urves do5 The two aÆne transformations �1; �2 are limiting 
ases of a
ontinuous set of aÆne transformations between � and any 
onfo-
al one-sheet hyperboloid. These mappings are length-preservingfor all generators of �. This is the basis for Henri
i's 
exible modelof a one-sheet hyperboloid with linked rods representing the twosets of generators (see e.g. Hilbert (1996) or Sta
hel (1996)). The
at limiting positions of this model 
onsist of tangent lines eitherof the fo
al ellipse e or the fo
al hyperbola h.

never interse
t the 
oplanar prin
ipal se
tions; e.g., thefo
al ellipse e lies in the exterior of �.A

ording to Ivory's theorem (see e.g. Sta
hel (2002))for any two points P;Q 2 � the following distan
es areequal:P �i(Q) = Q�i(P ):PSfrag repla
ements A01
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Figure 3: Proving the 
exibility of Type 3with Ivory's theoremFor proving the existen
e of a 
ontinuous set of o
tahe-dra being isometri
 to the 
at position we note Lemma 3whi
h states: There is a 
ontinuous set of 
oni
s 
 tan-gent to A1B1A2B2 with a 
onfo
al e
 passing throughC1 and C2. We see ea
h e
 as a prin
ipal se
tion of aone-sheet hyperboloid � and 
 as a 
oplanar fo
al 
urve(see Fig. 3).The statement above reveals that there is a quadrangleA01B01A02B02 with sides on � whi
h is mapped by theaÆne transformation �1 or �2 onto A1B1A2B2 whilethe lengths of all sides are preserved.6 Under the same�i the verti
es C1; C2 2 e
 are mapped onto C 01; C 02 2 
,and Ivory's theorem 
on
ludes the proof that the spatialo
tahedron A01 : : : C 02 is isometri
 to the 
at position.However, two items remain to be proved:� e
 needs to be inside the fo
al 
urve 
, to say, notangent line of 
 may interse
t e
, and� 
 and e
 must be of the same type.For proving this, we note that there is a 
oni
 
0 tangentto A1B1A2B2 and passing through both line elements(Ci;MCi), i = 1; 2. Fig. 2 reveals6 A01B01A02B02 2 � is unique only up to a re
e
tion in the planeof the prin
ipal se
tion e
.



fb
0g = [bpA1A2 bpB1B2 ℄ \ [bpM bpC1C2 ℄:Now we start with 
 = e
 = 
0 and use 
ontinuity argu-ments:Let t denote any side of A1B1A2B2. While the 2nd-
lass
urve be
 varies in the 
onta
t range [bpM bpC1C2 ℄ the poleT of t with respe
t to be
 tra
es a line t0 due to (2). Forbe
 = b
0 we obtain T as the point T0 of 
onta
t between tand 
0. For be
 = bpM the pole T 
oin
ides with M .Now it depends on the 
hoi
e of dire
tion when startingfrom 
0: If T moves along t0 torwards inside 
0, i.e.,if T; T0 are not separated by M and S = t0 \ C1C2,then the 
orresponding 
oni
 e
 will not interse
t t. Thisresults from properties of the polarity with respe
t to e
and the involution of 
onjugate points on t0.So these e
 are inside the 
onfo
al 
 2 [bpA1A2 bpB1B2 ℄.And in a neighborhood of 
0 neither the (aÆne) typeof e
 nor that of 
 will 
hange. It turns out that both
onditions remain valid until T rea
hes the line C1C2at S with be
 = bpC1C2 . This is the limiting position withthe se
ond 
at position; the 
orresponding hyperboloid� degenerates into the fo
al 
oni
 of 
0.4. PROPERTIES OF THE HEXAGON A1 : : : C2Let ai; bi; 
i denote the lines whi
h 
onne
t M withAi; Bi; Ci, resp., for i = 1; 2 (see Fig. 4).PSfrag repla
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Figure 4: Symmetry properties of the 
atposition A1 : : : C2Lemma 4 The pairs (a1; a2), (b1; b2) and (
1; 
2) oflines through M have 
ommon axes s1; s2 of symmetry.At ea
h of the six verti
es (e.g. at Ai) the 
onne
tinglines with the other pairs (B1; B2 and C1; C2) are sym-metri
 with respe
t to the line through M .Proof: The symmetry atM (see Fig. 4) is a 
onsequen
eof Desargues' involution theorem: For the 
urves of the

range [bpA1A2 bpB1B2 ℄ the tangent lines passing throughM 
onstitute an involution in
luding the pair MI1 7!MI2. Hen
e pairs of this involution are symmetri
 withrespe
t to two perpendi
ular lines s1; s2. As all 
urvesof a 
onta
t range through bpM share the tangent linesthrough M , the involution in
ludes the pairs of tangentlines for all 
urves in S n bpM .The symmetry at the verti
es is obvious be
ause of the
ir
les kAB ; kAC ; kBC .Lemma 5 Let 
0i denote the line through Ci perpendi
-ular to 
i = MCi (see Fig. 5). Then 
i and 
0i interse
tthe lines A1A2 and B1B2 at points being harmoni
 withrespe
t to the in
ident pair of opposite verti
es.Proof: S 
an be spanned by bpM , bpA1A2 and bpI1I2 .Let �1; �2; �3 be the 
orresponding polar forms and letL1; L2; L3 be the linear mappings due to (1). Then forthe line l = vR the pole with respe
t to any b
 2 S is(�1L1(v) + �2L2(v) + �3L3(v))R:When l passes through M , we obtain L1(v) = o. There-fore the poles tra
e a line l0. Due to the polarity withrespe
t to bpI1I2 the line l0 is perpendi
ular to l. Onthe other hand l0 passes through the pole �(l) (
ompare�(
1) in Fig. 5) of l with respe
t to bpA1A2 . Without
hanging l0 we 
an repla
e bpA1A2 by bpB1B2 2 S.PSfrag repla
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Figure 5: Strophoid 
3 as the lo
us of verti
esTheorem 2 In the 
at position of Type 3 the verti
esA1; : : : ; C2 are lo
ated on a rational 
ubi
 
3. This 
u-bi
 has a node at M with perpendi
ular tangent lines



s1; s2, and 
3 passes through the absolute points I1; I2.Therefore 
3 is a `strophoidal' 
ubi
 with the followingadditional properties:(i) 
3 is the lo
us of fo
al points of all 
oni
s in
ludedin S.(ii) 
3 is the lo
us of points of 
onta
t for tangent lineswhi
h 
an be drawn from M to any 
oni
 of S.(iii) 
3 is the pedal 
urve of M with respe
t to theparabola p whi
h is the envelope of the axes of sym-metry for all non-
ir
ular 
oni
s in
luded in S.(iv) The pairs of opposite verti
es (A1; A2), (B1; B2)and (C1; C2) on 
3 are lo
ated on lines for whi
hthe pedal point of M is again a point of 
3.Proof: We de�ne 
3 als the set of interse
tion pointsl \ l0 for any line l through M and the 
orresponding`
onjugate' l0 with respe
t to all b
 2 S. If b
 is a 
oni
with fo
al points F1; F2, then due to Lemma 2 also bpF1F2is in
luded in S. And for l = MFi the 
orrespondingl0 is the perpendi
ular line through Fi whi
h impliesFi 2 
3.7 The harmoni
 properties 
ited in Lemma 5reveal that the lines l0 
onne
t 
orresponding points ofa proje
tivity between A1A2 and the line at in�nity.Hen
e the lines l0 are tangent to a parabola p,8 andl \ l0 is the pedal point of M on the tangent line l0 ofp. From the proje
tive generation of p we 
on
lude thatalso A1A2 is tangent to p. Therefore the pedal point ofM on A1A2 belongs to 
3, too. Finally, bpA1A2 
an berepla
ed by fo
al points of any other non-
ir
ular 
oni
b
 2 S.5. CONCLUDING REMARKS ON TYPE 3The proof of the 
exibility of Type 3 works in the sameway in the proje
tive models of the ellipti
 and the hy-perboli
 3-spa
e. The only di�eren
e is that bpI1I2 has tobe repla
ed by the dual of the absolute 
oni
. So, alsoin these spa
es there exist at least three types of 
exibleo
tahedra.We 
an spe
ify A1; A2 and M in Fig. 1 su
h that B1 isa point at in�nity. Ivory's theorem reveals also in this
ase a 
exible polyhedron 
onsisting of a pyramid anda prism. After re
e
ting the pyramid in a plane per-pendi
ular to the prism we obtain a 
exible polyhedron
onsisting of two pyramids and a 
ylindri
al middle part.A re
ently presented 
onverse of Ivory's theorem(Sta
hel (2002)) allows to give a short new proof for the7 In R. Bri
ard (1927) an approa
h to Type 3 is presented viaproperties of a \strophoidal" spatial 
ubi
. This is exa
tly theanalogon of 
3 in non-
at positions of the o
tahedron O.8 p is the so
alled Chalses' parabola asso
iated to the pen
ilbpM under the birational transformation of orthogonally 
onjugatelines with respe
t to any 
oni
 b
 2 S (
ompare Dingeldey (1903)).

fa
t that Type 3 is the only 
exible o
tahedron with a
at position | apart from trivial 
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