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Abstra
t. A

ording to the planar version of Ivory's theorem the net of 
onfo
al
oni
s has the property that in ea
h quadrangle formed by two pairs of 
oni
s thediagonals are of equal length. It turns out that this theorem is 
losely related toself-adjoint aÆne transformations. And from this point of view it is possible toprove the Minkowskian analogon of Ivory's Theorem in a more uni�ed way for allsix types of 
oni
s.Key Words: Minkowkian geometry, pseudo-Eu
lidean geometry, 
onfo
al 
oni
s,Ivory's TheoremMSC 2000: 51N251. Introdu
tionA

ording to the planar Eu
lidean version of Ivory's Theorem the net of 
onfo
al 
oni
s hasthe property that in ea
h quadrangle formed by two pairs of 
oni
s the two diagonals have thesame length (see Fig. 1). Another formulation of this theorem uses the fa
t that for any two
onfo
al 
oni
s k; k0 of the same type an aÆne transformation � with k 7! k0 
an be de�nedsu
h that 
urves of the 
onfo
al net interse
t k and k0 orthogonally at 
orresponding pointsX 2 k and X 0 = �(X) 2 k0. Then Ivory's Theorem statesX1 �(X2) = �(X1)X2 for all X1; X2 2 k:This statement holds also for singular � when k0 = �(k) degenerates into a set of pointslo
ated on an axis of symmetry.Ivory proved 1809 in [3℄ the 3D-version of this theorem by straight forward 
al
ulationusing an appropriate parametrization (
ompare also [1, 2, 4, 5, 7℄). A
tually, this theoremholds in the Eu
lidean n-spa
e for any n > 1 (see e.g. [6℄). The aim of this paper is todemonstrate that Ivory's Theorem is also valid in the Minkowski plane M 2 (pseudo-Eu
lideanplane). However, we avoid a straight forward 
omputation separately for ea
h of the six typesof 
oni
s. Based on a lemma on self-adjoint aÆne transformations we give a more or lessgeneral proof in Se
tion 3 by 
he
king the system (17) of nonlinear equations.
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Figure 1: Ivory's Theorem in the Eu
lidean plane E 2The Minkowski plane M 2 
an be identi�ed with the real aÆne plane where the underlyingve
tor spa
e R2 is endowed with a non-degenerate inde�nite symmetri
 bilinear form (`s
alarprodu
t'). The distan
e of points X; Y with 
oordinate ve
tors x, y is de�ned asXY = kx� ykm := q(x� y)�(x� y):This distan
e is either a nonnegative number or the produ
t of a positive number and theimaginary unit i. A line segment XY as well as the spanned line [XY ℄ are 
alled lightlike(isotropi
), spa
elike or timelike if the length XY is zero, positive or imaginary, respe
tively.We 
all an aÆne 
oordinate system orthonormal in the Minkowski sense when the `s
alarprodu
t' of two ve
tors x = (x1; x2), y = (y1; y2) 
an be written asx�y = x1y1 � x2y2:(1)Then the 
oordinate axes separate the two isotropi
 dire
tions harmoni
ally. In the sequelwe only use orthonormal 
oordinates.The �gures in this paper are based on the standard model of M 2 in E 2 where the 
oor-dinate system is at the same time orthonormal in the Eu
lidean sense. Lightlike lines makean angle of 45Æ with the x1-axis, spa
elike lines have an in
lination < 45Æ. In the 
ase ofambiguities we use the pre�x \m-" or \e-" at geometri
 terms in order to indi
ate whetherthey are meant in the Minkowskian or Eu
lidean sense, respe
tively.



H. Sta
hel: Ivory's Theorem in the Minkowski Plane 3Two 
oni
s are 
onfo
al in M 2 if and only if their tangential equations span a linearsystem whi
h 
ontains the set of isotropi
 lines as a singular 
urve. This linear system usually
ontains also other singular 
urves | line pen
ils or pairs of line pen
ils. They 
an't beuniquely de�ned as point sets. However, they 
an show up in di�erent ways as limiting 
urvesof 
onfo
al 
oni
s.12. Types of 
oni
s in M 2Up to m-isometries and a 
ommutation of the 
oordinate axes there are six types of 
oni
sto distinguish in M 2 . We present their equations in normal form:A. Cir
les: They have the normal formk : x21 � x22 = � with � 6= 0:(2)We obtain the set of 
urves 
onfo
al to k by repla
ing the squared m-radius � by aparameter t 2 R.B. Coni
s with two axes of symmetry: Their equation in normal form readsk : x21� + x22� = 1 with ��(� + �) 6= 0:(3)e := p� + � denotes the ex
entri
ity of these 
oni
s. Their m-fo
al points areF1 = (�e; 0); F2 = (e; 0); F3 = (0;�e); F4 = (0; e)(see Fig. 2). The set of 
oni
s 
onfo
al with k 
an be written asx21� � t + x22� + t = 1 for t 2 R n f�; �g:(4)Under �; � > 0 we get ellipses for �� < t < �, hyperbolas for t < �� or t > �. Thelimiting 
urves of the ellipses for t ! �� or t ! � are the 
losed line segments F1F2or F3F4, respe
tively. The hyperbolas tend to pairs of aligned but disjoint half-linesterminated either by the fo
al points F1; F2 or by F3; F4.C. Hyperbolas with a spa
elike and a timelike asympote: These 
oni
s (see Fig. 4) havea 
enter but no axis of symmetry. We use 
oordinate axes 
orresponding under theinvolution spanned by the isotropi
 dire
tions and the asymptotes. Let �1 < � < 1denote the e-slope of the spa
elike asymptote. Then we get the equation�(x22 � x21) + (1� �2)x1x2 = � with � 6= 0:(5)The 
orresponding set of 
onfo
al 
oni
s reads[� + (1 + �2)2t℄(x22 � x21) + (1� �2)x1x2 = � [1 + 8�t� 4(1 + �2)2t2℄; t 2 R:(6)In the Eu
lidean sense all these hyperbolas are orthogonal (see Fig. 4). The pairwise
onjugate 
omplex m-fo
al points are lo
ated on the e-isotropi
 lines x2 = �ix1.1In E 2 (see Fig. 1) the 
onfo
al ellipses with de
reasing minor axes tend to the line segment terminatedby the fo
al points F1; F2. The limiting 
urve of 
onfo
al hyperbolas with de
reasing se
ondary axes 
onsistsof two half-lines terminated by F1, F2, respe
tively.



4 H. Sta
hel: Ivory's Theorem in the Minkowski PlaneD. Hyperbolas with one lightlike asymptote: We spe
ify the non-isotropi
 asymptote asx1-axis and obtain k : x1x2 � x22 = � with � 6= 0:(7)The 
onfo
al 
oni
s with equations� tx21 + x1x2 + (t� 1)x22 = �(12t)2 for t 2 R(8)share the fo
al points F1 = (p2�;p2�) and F2 = (�p2�;�p2�).E. Parabolas with non-isotropi
 axis: We 
hoose the axis as x1-axis and get the normalform k : x22 � 4�x1 = 0 with � 6= 0:(9)The 
onfo
al parabolas obeyingx22 � 4(t+ �)(x1 � t) = 0 for t 2 R(10)share the fo
al point F = (��; 0).F. Parabolas with a lightlike axis: Their equation in normal form readsk : (x1 + x2)2 � 2�(x1 � x2) = 0 with � 6= 0:(11)The 
onfo
al parabolas obey(x1 + x2)2 � 2�(x1 � x2) + 2t(x1 + x2) + t2 = 0 for t 2 R:(12)3. Proof of Ivory's Theorem in M 2We follow the ideas presented in [6℄, Lemma 2, and stress the fa
t that Ivory's Theoremdeals with pairs (xj; x0j) of aÆnely related points2 xj 2 k, x0j 2 k0 of two 
onfo
al 
oni
sk; k0. Are there 
urves k; k0 with the 'Ivory property' kx1 � x02km = kx01 � x2km at any aÆnetransformation?Let us start with two aÆne mappings:� : M 2 ! M 2 ; x 7! �(x) = a+ l(x);�� : M 2 ! M 2 ; y 7! ��(y) = a� + l�(y)(13)with l; l� : R2 ! R2 denoting the indu
ed linear mappings.Suppose there are 
urves of Ivory type, i.e., point sets X = fx1; x2; : : :g and Y =fy1; y2; : : : g su
h that there are equal distan
eskxj � ��(yk)km = k�(xj)� ykkm for all xj 2 X and yk 2 Y:This gives rise to the equation (xj � ��(yk))�(xj ���(yk)) = (�(xj)� yk)�(�(xj)� yk), or aftersubstitution of (13)x2j � 2xj �[a� + l�(yk)℄ + [a� + l�(yk)℄2 = [a+ l(xj)℄2 � 2[a+ l(xj)℄�yk + yk2:2From now on we identify points X with their 
oordinate ve
tors x.
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Figure 2: Confo
al 
oni
s with two axes ofsymmetry (type B) in M 2 Figure 3: Net of 
onfo
al 
oni
s(type B) in M 2Now we spe
ify that the linear mapping l� is adjoint to l,3 obeyingu�l�(v) = l(u)�v for all u; v 2 R2 :(14)Then in the equation above we 
an 
an
el the `mixed' terms xj �l�(yk) = l(xj)�yk and separatethe remaining terms su
h that those depending from xj are pla
ed on the left side, thosedepending from yk on the right side:x2j � l(xj)2 � 2xj �a� � 2l(xj)�a+ a�2 = yk2 � l�(yk)2 � 2yk �a� 2a� �l�(yk) + a2:As this equation shall hold for all j; k 2 f1; 2; : : :g, both sides must equal a 
onstant 
 2 R.This results in two quadrati
 fun
tionsf(x) := x�x� l(x)�l(x)� 2x�[a� + l�(a)℄ + a� �a� � 
;g(y) := y�y� l�(y)�l�(y)� 2y�[a+ l(a�)℄ + a�a� 
(15)with f(xj) = g(yk) = 0 for all j; k 2 f1; 2; : : :g. Hen
e X is the set of zeros of f(x) andtherefore a 
urve of se
ond order. Conversely, for ea
h 
onstant 
 2 R all zeros x of f and yof g ful�l kx� ��(y)km = k�(x)� ykm.In the Ivory 
ase the zero set X 
oin
ides with Y, and � equals ��. Thus we have a
hievedthe following3It is proved in [6℄ that this 
ondition is ne
essary if there are at least three non-
ollinear points x1; x2; x3.Here we only need the suÆ
ien
y.



6 H. Sta
hel: Ivory's Theorem in the Minkowski Plane
PSfrag repla
ements

x1
x2 XY

1
2

3
kX 0

Y 0
10

20 30=440
k0

Figure 4: Confo
al 
oni
s without any axis of symmetry (type C) in M 2Lemma 1: For ea
h self-adjoint aÆne transformation �, i.e. with l� = l and a� = a in (13),the se
ond-order 
urve X : f(x) = 0 a

ording to (15) together with its image �(X) has theIvory property kx1 � �(x2)km = k�(x1)� x2km for any two zeros x1; x2 of f .4In order to prove Ivory's Theorem in M 2 , we asso
iate to ea
h 
oni
 k a self-adjointaÆne transformation � su
h that k obeys the 
orresponding equation f(x) = 0.We use orthonormal 
oordinates and set up� = �� :  x1x2 ! 7!  x01x02 ! =  a10a20 !+  a11 a12a21 a22 ! x1x2 ! with a21 = �a12:The last equation is equivalent to the fa
t that l is self-adjoint with respe
t to the inde�nites
alar produ
t (1). Then the quadrati
 fun
tions in (15) read expli
itelyf(x) = g(x) = (1� a211 + a212)x21 � 2a12(a11 + a22)x1x2 � (1 + a212 � a222)x22��2[(1 + a11)a10 + a12a20℄x1 + 2[(1 + a22)a20 � a12a10℄x2 + a210 � a220 � 
 :On the other hand, let a 
oni
 k be given by the equation
11x21 + 2
12x1x2 + 
22x22 + 2
10x1 + 2
20x2 + 
00 = 0(16)whi
h of 
ourse is unique up to a fa
tor � 2 R nf0g only. The 
omparison of 
oeÆ
ients givesrise to the following system of equations for the unknown ajk:1� a211 + a212 = �
11�1� a212 + a222 = �
22�a12(a11 + a22) = �
12 �(1 + a11)a10 � a12a20 = �
10�a12a10 + (1 + a22)a20 = �
20a210 � a220 � 
 = �
00(17)4Note that this holds for any symmetri
 bilinear 's
alar produ
t' in any dimension (
f. [6℄).
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hel: Ivory's Theorem in the Minkowski Plane 7After the equations in the �rst 
olumn are solved for a11, a12 and a22, there are linear equationsremaining for a10, a20 and 
. We dedu
e from the �rst 
olumna222 � a211 = �(
11 + 
22) and 
12(a22 � a11) + (
11 + 
22)a12 = 0:(18)Case 1, 
12 = 
11 + 
22 = 0 ; k is a 
ir
le (type A):There are two solutions for �, eithera22 = a11 = �q1� �
11; a12 = 0 or a22 = �a11; a12 = �q�
11 + a211 � 1 8a11 2 R:In the normal form (2) of a 
ir
le k we have 
11 = 1, 
10 = 
20 = 0 and 
00 = ��. Then inthe �rst solution � is a dilatation with s
aling fa
tor p1� �, � � 1, and �(k) is a 
on
entri

ir
le or a point (� = 1). This is the Ivory 
ase.The se
ond solution of � yields a bilinear mapping l : R2 ! R2 with the 
oordinaterepresentation a11 a12a21 a22 ! = p1� � 
osh' sinh'� sinh' � 
osh' !under � < 1, or a a�a �a !under � = 1for any a 2 R. In the regular 
ase � is the produ
t of a dilatation and an m-re
e
tion in adiameter line; �(k) is again a 
ir
le 
on
entri
 with k. The singular 
ase is the only one whi
hhas no Eu
lidean 
ounterpart: �(k) is an asymptote of k or (a = 0) it degenerates again intothe 
enter point of k.Case 2, 
12 = 0; 
11 + 
22 6= 0 ; k is of type B or E:We solve (17) and (18) and obtaina12 = 0; a11 = q1� �
11; a22 = q1 + �
22:This gives the `
lassi
al' 
ases with Eu
lidean analoga:For the normal form (3) of type B (
11 = 1=�, 
22 = 2=�) we obtain the aÆne transformation� : (x1; x2) 7! (x01; x02) = �x1q1� �=�; x2q1 + �=��under �=� � 1 and �=� � �1. This is displayed in Fig. 2. The pairs of 
oni
s (k; �(k))within the 
onfo
al net (see Fig. 3) are any two ellipses or any two hyperbolas sharing theirprin
ipal axis.In the singular 
ase � = �� with � : X 7! X" (see Fig. 2) Ivory's Theorem revealsXF1 +XF2 = X1" +X2" = X"1 +X"2 = 12:Together with the se
ond singular 
ase � = �, X 7! X 000, we obtain e.g., that any ellipse k inM 2 
an be de�ned ask = nX jXF1 +XF2 = 12 = Co = nX ��� jXF3 �XF4j = 34 = Cio for a 
onstant C > 0:In the paraboli
 
ase of type E (
11 = 0, 
22 = 1, 
10 = �2�) we get� : (x1; x2) 7! (x01; x02) = ��� + x1; x2p1 + �� for � � �1:



8 H. Sta
hel: Ivory's Theorem in the Minkowski PlaneThe parameters of 
orresponding parabolas k and �(k) have the same sign.Case 3, 
11 + 
22 = 0, 
12 6= 0 ; k is of type C:We obtaina12 = ��
12a11 + a22 ; a22 = a11 and q(a211) = 0 for q(x) := 4x2 � 4(1� �
11)x� �2
212 = 0 :The quadrati
 fun
tion q(x) has always a positive zero sin
e the 
oeÆ
ient of x2 is positiveand q(0) < 0.In the normal form (5) of type C we have 
22 = � = �
11 and 
12 = 12(1� �2). This impliesa12 = ��(1� �2)4a11 and a211 � (1 + ��) = �2(1� �2)216a211 :The aÆne transformation� :  x1x2 ! 7!  x01x02 ! = 0� a11 ��(1��2)4a11�(1��2)4a11 a11 1A x1x2 !is the produ
t of an e-rotation and a dilatation5 and maps k onto a 
onfo
al 
oni
 obeying(6) with � = 4t (
ompare Fig. 4).Case 4, 
11 + 
22 6= 0 and 
12 6= 0 ; k is of type D or F:We dedu
e from (18) a12 = 
12(a11 � a22)
11 + 
22and substitute this in the �rst equation of (17). Repla
ing a222 from (18) results ina22 = (2
212 � 
211 � 2
11
22 � 
222)a211 � (
11 + 
22) [(
11 + 
22)(�
11 � 1)� �
212℄2
212a11 :Then (18) gives rise to a biquadrati
 equation for a11. However, for the types D with equation(7) (
11 = 0, 
12 = 12 , 
22 = �1) and F with equation (11) (
11 = 
12 = 
22 = 1, 
10 = �
20 =��,) this equation is quadrati
 only, and it has always real solutions.The aÆne transformation � for type D reads� :  x1x2 ! 7!  x01x02 ! = 1�2p4� 2�  �� 4 ��� 3�� 4 ! x1x2 ! ; � < 2;and the image �(k) obeys (8) with � = 4t.For type F we get a11 = �(�� 2)=2. It turns out that the linear equations for a10 and a20in (18), right 
olumn, are solvable only with the lower sign of a11. We then obtain for type Fthe aÆne transformation� :  x1x2 ! 7!  x01x02 ! = ��4  2 + �2� � !+ 12  2� � ��� 2 + � ! x1x2 ! :5� is an e-similarity. This 
an also be 
on
luded from the fa
t that the singular 
urves in the 
onfo
al net,the e-isotropi
 lines, interse
t k and �(k) at 
orresponding points. Hen
e these e-isotropi
 lines remain �xedunder �.
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hel: Ivory's Theorem in the Minkowski Plane 9The equation of �(k) 
oin
ides with (12) under t = �2��.Thus we have provedTheorem: 1. For any 
oni
 k in the Minkowski plane M 2 there is a self-adjoint aÆnetransformation � su
h that k obeys the 
orresponding equation f(x) = 0 a

ording to (15).2. Ivory's Theorem is true in M 2 for all six types of 
oni
s.It 
an be veri�ed that in all 
ases the path �(x0) of any point x0 2 k for variable � is againlo
ated on a 
urve of the 
onfo
al net. A general proof for this is left for a future publi
ation| as well as a proof for the fa
t that any regular self-adjoint � maps k : f(x) = 0 (given by(15)) onto a 
onfo
al 
oni
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