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Abstrat. Aording to the planar version of Ivory's theorem the net of onfoalonis has the property that in eah quadrangle formed by two pairs of onis thediagonals are of equal length. It turns out that this theorem is losely related toself-adjoint aÆne transformations. And from this point of view it is possible toprove the Minkowskian analogon of Ivory's Theorem in a more uni�ed way for allsix types of onis.Key Words: Minkowkian geometry, pseudo-Eulidean geometry, onfoal onis,Ivory's TheoremMSC 2000: 51N251. IntrodutionAording to the planar Eulidean version of Ivory's Theorem the net of onfoal onis hasthe property that in eah quadrangle formed by two pairs of onis the two diagonals have thesame length (see Fig. 1). Another formulation of this theorem uses the fat that for any twoonfoal onis k; k0 of the same type an aÆne transformation � with k 7! k0 an be de�nedsuh that urves of the onfoal net interset k and k0 orthogonally at orresponding pointsX 2 k and X 0 = �(X) 2 k0. Then Ivory's Theorem statesX1 �(X2) = �(X1)X2 for all X1; X2 2 k:This statement holds also for singular � when k0 = �(k) degenerates into a set of pointsloated on an axis of symmetry.Ivory proved 1809 in [3℄ the 3D-version of this theorem by straight forward alulationusing an appropriate parametrization (ompare also [1, 2, 4, 5, 7℄). Atually, this theoremholds in the Eulidean n-spae for any n > 1 (see e.g. [6℄). The aim of this paper is todemonstrate that Ivory's Theorem is also valid in the Minkowski plane M 2 (pseudo-Eulideanplane). However, we avoid a straight forward omputation separately for eah of the six typesof onis. Based on a lemma on self-adjoint aÆne transformations we give a more or lessgeneral proof in Setion 3 by heking the system (17) of nonlinear equations.



2 H. Stahel: Ivory's Theorem in the Minkowski Plane

PSfrag replaements
kX1 X2

k0X 01 X 02F1 F2

Figure 1: Ivory's Theorem in the Eulidean plane E 2The Minkowski plane M 2 an be identi�ed with the real aÆne plane where the underlyingvetor spae R2 is endowed with a non-degenerate inde�nite symmetri bilinear form (`salarprodut'). The distane of points X; Y with oordinate vetors x, y is de�ned asXY = kx� ykm := q(x� y)�(x� y):This distane is either a nonnegative number or the produt of a positive number and theimaginary unit i. A line segment XY as well as the spanned line [XY ℄ are alled lightlike(isotropi), spaelike or timelike if the length XY is zero, positive or imaginary, respetively.We all an aÆne oordinate system orthonormal in the Minkowski sense when the `salarprodut' of two vetors x = (x1; x2), y = (y1; y2) an be written asx�y = x1y1 � x2y2:(1)Then the oordinate axes separate the two isotropi diretions harmonially. In the sequelwe only use orthonormal oordinates.The �gures in this paper are based on the standard model of M 2 in E 2 where the oor-dinate system is at the same time orthonormal in the Eulidean sense. Lightlike lines makean angle of 45Æ with the x1-axis, spaelike lines have an inlination < 45Æ. In the ase ofambiguities we use the pre�x \m-" or \e-" at geometri terms in order to indiate whetherthey are meant in the Minkowskian or Eulidean sense, respetively.



H. Stahel: Ivory's Theorem in the Minkowski Plane 3Two onis are onfoal in M 2 if and only if their tangential equations span a linearsystem whih ontains the set of isotropi lines as a singular urve. This linear system usuallyontains also other singular urves | line penils or pairs of line penils. They an't beuniquely de�ned as point sets. However, they an show up in di�erent ways as limiting urvesof onfoal onis.12. Types of onis in M 2Up to m-isometries and a ommutation of the oordinate axes there are six types of onisto distinguish in M 2 . We present their equations in normal form:A. Cirles: They have the normal formk : x21 � x22 = � with � 6= 0:(2)We obtain the set of urves onfoal to k by replaing the squared m-radius � by aparameter t 2 R.B. Conis with two axes of symmetry: Their equation in normal form readsk : x21� + x22� = 1 with ��(� + �) 6= 0:(3)e := p� + � denotes the exentriity of these onis. Their m-foal points areF1 = (�e; 0); F2 = (e; 0); F3 = (0;�e); F4 = (0; e)(see Fig. 2). The set of onis onfoal with k an be written asx21� � t + x22� + t = 1 for t 2 R n f�; �g:(4)Under �; � > 0 we get ellipses for �� < t < �, hyperbolas for t < �� or t > �. Thelimiting urves of the ellipses for t ! �� or t ! � are the losed line segments F1F2or F3F4, respetively. The hyperbolas tend to pairs of aligned but disjoint half-linesterminated either by the foal points F1; F2 or by F3; F4.C. Hyperbolas with a spaelike and a timelike asympote: These onis (see Fig. 4) havea enter but no axis of symmetry. We use oordinate axes orresponding under theinvolution spanned by the isotropi diretions and the asymptotes. Let �1 < � < 1denote the e-slope of the spaelike asymptote. Then we get the equation�(x22 � x21) + (1� �2)x1x2 = � with � 6= 0:(5)The orresponding set of onfoal onis reads[� + (1 + �2)2t℄(x22 � x21) + (1� �2)x1x2 = � [1 + 8�t� 4(1 + �2)2t2℄; t 2 R:(6)In the Eulidean sense all these hyperbolas are orthogonal (see Fig. 4). The pairwiseonjugate omplex m-foal points are loated on the e-isotropi lines x2 = �ix1.1In E 2 (see Fig. 1) the onfoal ellipses with dereasing minor axes tend to the line segment terminatedby the foal points F1; F2. The limiting urve of onfoal hyperbolas with dereasing seondary axes onsistsof two half-lines terminated by F1, F2, respetively.



4 H. Stahel: Ivory's Theorem in the Minkowski PlaneD. Hyperbolas with one lightlike asymptote: We speify the non-isotropi asymptote asx1-axis and obtain k : x1x2 � x22 = � with � 6= 0:(7)The onfoal onis with equations� tx21 + x1x2 + (t� 1)x22 = �(12t)2 for t 2 R(8)share the foal points F1 = (p2�;p2�) and F2 = (�p2�;�p2�).E. Parabolas with non-isotropi axis: We hoose the axis as x1-axis and get the normalform k : x22 � 4�x1 = 0 with � 6= 0:(9)The onfoal parabolas obeyingx22 � 4(t+ �)(x1 � t) = 0 for t 2 R(10)share the foal point F = (��; 0).F. Parabolas with a lightlike axis: Their equation in normal form readsk : (x1 + x2)2 � 2�(x1 � x2) = 0 with � 6= 0:(11)The onfoal parabolas obey(x1 + x2)2 � 2�(x1 � x2) + 2t(x1 + x2) + t2 = 0 for t 2 R:(12)3. Proof of Ivory's Theorem in M 2We follow the ideas presented in [6℄, Lemma 2, and stress the fat that Ivory's Theoremdeals with pairs (xj; x0j) of aÆnely related points2 xj 2 k, x0j 2 k0 of two onfoal onisk; k0. Are there urves k; k0 with the 'Ivory property' kx1 � x02km = kx01 � x2km at any aÆnetransformation?Let us start with two aÆne mappings:� : M 2 ! M 2 ; x 7! �(x) = a+ l(x);�� : M 2 ! M 2 ; y 7! ��(y) = a� + l�(y)(13)with l; l� : R2 ! R2 denoting the indued linear mappings.Suppose there are urves of Ivory type, i.e., point sets X = fx1; x2; : : :g and Y =fy1; y2; : : : g suh that there are equal distaneskxj � ��(yk)km = k�(xj)� ykkm for all xj 2 X and yk 2 Y:This gives rise to the equation (xj � ��(yk))�(xj ���(yk)) = (�(xj)� yk)�(�(xj)� yk), or aftersubstitution of (13)x2j � 2xj �[a� + l�(yk)℄ + [a� + l�(yk)℄2 = [a+ l(xj)℄2 � 2[a+ l(xj)℄�yk + yk2:2From now on we identify points X with their oordinate vetors x.
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Figure 2: Confoal onis with two axes ofsymmetry (type B) in M 2 Figure 3: Net of onfoal onis(type B) in M 2Now we speify that the linear mapping l� is adjoint to l,3 obeyingu�l�(v) = l(u)�v for all u; v 2 R2 :(14)Then in the equation above we an anel the `mixed' terms xj �l�(yk) = l(xj)�yk and separatethe remaining terms suh that those depending from xj are plaed on the left side, thosedepending from yk on the right side:x2j � l(xj)2 � 2xj �a� � 2l(xj)�a+ a�2 = yk2 � l�(yk)2 � 2yk �a� 2a� �l�(yk) + a2:As this equation shall hold for all j; k 2 f1; 2; : : :g, both sides must equal a onstant  2 R.This results in two quadrati funtionsf(x) := x�x� l(x)�l(x)� 2x�[a� + l�(a)℄ + a� �a� � ;g(y) := y�y� l�(y)�l�(y)� 2y�[a+ l(a�)℄ + a�a� (15)with f(xj) = g(yk) = 0 for all j; k 2 f1; 2; : : :g. Hene X is the set of zeros of f(x) andtherefore a urve of seond order. Conversely, for eah onstant  2 R all zeros x of f and yof g ful�l kx� ��(y)km = k�(x)� ykm.In the Ivory ase the zero set X oinides with Y, and � equals ��. Thus we have ahievedthe following3It is proved in [6℄ that this ondition is neessary if there are at least three non-ollinear points x1; x2; x3.Here we only need the suÆieny.
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Figure 4: Confoal onis without any axis of symmetry (type C) in M 2Lemma 1: For eah self-adjoint aÆne transformation �, i.e. with l� = l and a� = a in (13),the seond-order urve X : f(x) = 0 aording to (15) together with its image �(X) has theIvory property kx1 � �(x2)km = k�(x1)� x2km for any two zeros x1; x2 of f .4In order to prove Ivory's Theorem in M 2 , we assoiate to eah oni k a self-adjointaÆne transformation � suh that k obeys the orresponding equation f(x) = 0.We use orthonormal oordinates and set up� = �� :  x1x2 ! 7!  x01x02 ! =  a10a20 !+  a11 a12a21 a22 ! x1x2 ! with a21 = �a12:The last equation is equivalent to the fat that l is self-adjoint with respet to the inde�nitesalar produt (1). Then the quadrati funtions in (15) read expliitelyf(x) = g(x) = (1� a211 + a212)x21 � 2a12(a11 + a22)x1x2 � (1 + a212 � a222)x22��2[(1 + a11)a10 + a12a20℄x1 + 2[(1 + a22)a20 � a12a10℄x2 + a210 � a220 �  :On the other hand, let a oni k be given by the equation11x21 + 212x1x2 + 22x22 + 210x1 + 220x2 + 00 = 0(16)whih of ourse is unique up to a fator � 2 R nf0g only. The omparison of oeÆients givesrise to the following system of equations for the unknown ajk:1� a211 + a212 = �11�1� a212 + a222 = �22�a12(a11 + a22) = �12 �(1 + a11)a10 � a12a20 = �10�a12a10 + (1 + a22)a20 = �20a210 � a220 �  = �00(17)4Note that this holds for any symmetri bilinear 'salar produt' in any dimension (f. [6℄).



H. Stahel: Ivory's Theorem in the Minkowski Plane 7After the equations in the �rst olumn are solved for a11, a12 and a22, there are linear equationsremaining for a10, a20 and . We dedue from the �rst olumna222 � a211 = �(11 + 22) and 12(a22 � a11) + (11 + 22)a12 = 0:(18)Case 1, 12 = 11 + 22 = 0 ; k is a irle (type A):There are two solutions for �, eithera22 = a11 = �q1� �11; a12 = 0 or a22 = �a11; a12 = �q�11 + a211 � 1 8a11 2 R:In the normal form (2) of a irle k we have 11 = 1, 10 = 20 = 0 and 00 = ��. Then inthe �rst solution � is a dilatation with saling fator p1� �, � � 1, and �(k) is a onentriirle or a point (� = 1). This is the Ivory ase.The seond solution of � yields a bilinear mapping l : R2 ! R2 with the oordinaterepresentation a11 a12a21 a22 ! = p1� � osh' sinh'� sinh' � osh' !under � < 1, or a a�a �a !under � = 1for any a 2 R. In the regular ase � is the produt of a dilatation and an m-reetion in adiameter line; �(k) is again a irle onentri with k. The singular ase is the only one whihhas no Eulidean ounterpart: �(k) is an asymptote of k or (a = 0) it degenerates again intothe enter point of k.Case 2, 12 = 0; 11 + 22 6= 0 ; k is of type B or E:We solve (17) and (18) and obtaina12 = 0; a11 = q1� �11; a22 = q1 + �22:This gives the `lassial' ases with Eulidean analoga:For the normal form (3) of type B (11 = 1=�, 22 = 2=�) we obtain the aÆne transformation� : (x1; x2) 7! (x01; x02) = �x1q1� �=�; x2q1 + �=��under �=� � 1 and �=� � �1. This is displayed in Fig. 2. The pairs of onis (k; �(k))within the onfoal net (see Fig. 3) are any two ellipses or any two hyperbolas sharing theirprinipal axis.In the singular ase � = �� with � : X 7! X" (see Fig. 2) Ivory's Theorem revealsXF1 +XF2 = X1" +X2" = X"1 +X"2 = 12:Together with the seond singular ase � = �, X 7! X 000, we obtain e.g., that any ellipse k inM 2 an be de�ned ask = nX jXF1 +XF2 = 12 = Co = nX ��� jXF3 �XF4j = 34 = Cio for a onstant C > 0:In the paraboli ase of type E (11 = 0, 22 = 1, 10 = �2�) we get� : (x1; x2) 7! (x01; x02) = ��� + x1; x2p1 + �� for � � �1:



8 H. Stahel: Ivory's Theorem in the Minkowski PlaneThe parameters of orresponding parabolas k and �(k) have the same sign.Case 3, 11 + 22 = 0, 12 6= 0 ; k is of type C:We obtaina12 = ��12a11 + a22 ; a22 = a11 and q(a211) = 0 for q(x) := 4x2 � 4(1� �11)x� �2212 = 0 :The quadrati funtion q(x) has always a positive zero sine the oeÆient of x2 is positiveand q(0) < 0.In the normal form (5) of type C we have 22 = � = �11 and 12 = 12(1� �2). This impliesa12 = ��(1� �2)4a11 and a211 � (1 + ��) = �2(1� �2)216a211 :The aÆne transformation� :  x1x2 ! 7!  x01x02 ! = 0� a11 ��(1��2)4a11�(1��2)4a11 a11 1A x1x2 !is the produt of an e-rotation and a dilatation5 and maps k onto a onfoal oni obeying(6) with � = 4t (ompare Fig. 4).Case 4, 11 + 22 6= 0 and 12 6= 0 ; k is of type D or F:We dedue from (18) a12 = 12(a11 � a22)11 + 22and substitute this in the �rst equation of (17). Replaing a222 from (18) results ina22 = (2212 � 211 � 21122 � 222)a211 � (11 + 22) [(11 + 22)(�11 � 1)� �212℄2212a11 :Then (18) gives rise to a biquadrati equation for a11. However, for the types D with equation(7) (11 = 0, 12 = 12 , 22 = �1) and F with equation (11) (11 = 12 = 22 = 1, 10 = �20 =��,) this equation is quadrati only, and it has always real solutions.The aÆne transformation � for type D reads� :  x1x2 ! 7!  x01x02 ! = 1�2p4� 2�  �� 4 ��� 3�� 4 ! x1x2 ! ; � < 2;and the image �(k) obeys (8) with � = 4t.For type F we get a11 = �(�� 2)=2. It turns out that the linear equations for a10 and a20in (18), right olumn, are solvable only with the lower sign of a11. We then obtain for type Fthe aÆne transformation� :  x1x2 ! 7!  x01x02 ! = ��4  2 + �2� � !+ 12  2� � ��� 2 + � ! x1x2 ! :5� is an e-similarity. This an also be onluded from the fat that the singular urves in the onfoal net,the e-isotropi lines, interset k and �(k) at orresponding points. Hene these e-isotropi lines remain �xedunder �.



H. Stahel: Ivory's Theorem in the Minkowski Plane 9The equation of �(k) oinides with (12) under t = �2��.Thus we have provedTheorem: 1. For any oni k in the Minkowski plane M 2 there is a self-adjoint aÆnetransformation � suh that k obeys the orresponding equation f(x) = 0 aording to (15).2. Ivory's Theorem is true in M 2 for all six types of onis.It an be veri�ed that in all ases the path �(x0) of any point x0 2 k for variable � is againloated on a urve of the onfoal net. A general proof for this is left for a future publiation| as well as a proof for the fat that any regular self-adjoint � maps k : f(x) = 0 (given by(15)) onto a onfoal oni �(k).Referenes[1℄ G. Albreht: Eine Bemerkung zum Satz von Ivory. J. Geom. 50 (1994), 1-10.[2℄ W. Blashke: Analytishe Geometrie. 2. Au., Verlag Birkh�auser, Basel 1954.[3℄ J. Ivory: On the Attrations of homogeneous Ellipsoids. Phil. Trans. of the Royal Soietyof London, 345{372 (1809).[4℄ H. Stahel: Eine Ortsaufgabe und der Satz von Ivory. Elem. Math. 37, 97{103 (1982).[5℄ H. Stahel: Eine Anwendung der kinematishen Abbildung. Anz. �osterr. Akad. Wiss.,Math.-Naturwiss. Kl. 1981, 108{111 (1982).[6℄ H. Stahel: Con�guration Theorems on Bipartite Frameworks. (in preparation).[7℄ O. Staude: Fl�ahen 2. Ordnung und ihre Systeme und Durhdringungskurven. Enyk-lop�adie der math. Wiss. III C 2, B.G. Teubner, Leipzig 1904.


