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DESCRIPTIVE GEOMETRY MEETS COMPUTER VISION —
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ABSTRACT: The geometry of multiple images has been a standard topic in Descriptive Geometry
and Photogrammetry (Remote Sensing) for more than 100 years. During the last twenty years great
progress has been made within the field of Computer Vision, a topic with the main goal to endow a
computer with a sense of vision. The previously graphical or mechanical methods of reconstruction
have been replaced by mathematical methods as offered by computer algebra systems. This paper
will explain to geometers how to reconstruct two digital images of the same scene and how to recover
metrical data of the depicted object — using standard software only. Not the presented results are
new, but the way how they are deduced by geometric reasoning. The arguments are based on Linear
Algebra and classical Descriptive Geometry results.

Section 1 deals with the difference between central perspectives and general linear images, i.e.,
between calibrated and uncalibrated images. Suppose a point x is imaged in two views, at x′ in the
first, and x′′ in the second. What is the relation between these corresponding image points x′,x′′ ?
This will be explained in Section 2; the required relation called ‘epipolar constraint’ is based on
the essential matrix. In Section 3 the problem of reconstruction is addressed, for the calibrated case
as well as for uncalibrated images. For given epipolar constraint the reconstruction of the depicted
scene is possible up to a collinear transform in the uncalibrated case and up to the scale for calibrated
images. The related theorems are already 100 years old. Hence, the crucial point is the determination
of the essential matrix. This problem, which is related to the classical Problem of Projectivity, is
solved in Section 4. The paper ends with an algorithm which can be carried out with any computer
algebra system like Maple.
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1. INTRODUCTION

Central projection:
The basic term in this paper is the central projec-
tion or linear perspective with center z and image
plane π (see Fig. 1). This is the geometric ideal-
ization of the photographic mapping with z as the
focal point or focal center of the lenses and π as
the plane of the film or CCD sensor. The pedal
point of z with respect to π is called principal
point h ; the distance d := ‖z − h‖ is the focal
length.
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Figure 1: Central projection

Each central projection or photographic map-
ping defines a particular coordinate system in
space, the camera frame. Its origin is placed at
the center z, the principal ray of the camera is the
z-axis. And the principal directions in the pho-
tosensitive plane serve as x- and y-axis. These
coordinate axes span the vanishing plane πv .

When at the same time the principal point h

is the origin of 2D-coordines (x′, y′) in the image
plane, then the photographic mapping x 7→ x′

obeys the matrix equation
(

x′

y′

)
=

d

z

(
x

y

)
.

It is appropriate to introduce homogeneous 2D-
coordinates (x′

0 : x′

1 : x′

2) by

x′ =
x′

1

x′

0

, y′ =
x′

2

x′

0

.

In the same way we use homogeneous 3D-coor-
dinates obeying

(x0 : x1 : x2 : x3) = (1 : x : y : z).

Then the linear perspective is expressed as a lin-
ear mapping
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 ·
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 .

Now we bring this in a more general form: We
replace the camera frame by arbitrary world co-
ordinates (x, y, z). And we admit that in the im-
age plane π our particular frame is modified by
a translation and by scalings to the system of
(x′, y′)-coordinates. Then we come up with the
general form of mapping equations:
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x′

2
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x d fx 0
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·
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·

·
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zy R

zz


 ·
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 .

On the right hand side there is a triple product of
matrices. The first matrix contains beside the fo-
cal distance d the new image coordinates (h′

x, h
′

y)
of the principal point h and the two scaling fac-
tors fx, fy which usually are set to 1 . These en-
tries are called the intrinsic calibration parame-
ters of the photo. An image where this parame-
ters are known is called calibrated. In this case
the image determines the bundle of rays z∨x up
to a rigid spatial motion.

The last matrix in the equation above con-
tains the orthogonal matrix R and the world co-
ordinates (zx, zy, zz) of the center z . This defines
the position of the camera frame with respect to
the world coordinates; the involved entries are
called extrinsic calibration parameters.

We can generalize the central projection by
a central axonometry. It maps the 3-space by
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a (singular) collinear transformation into the im-
age plane. Hence, collinearity of points remains
invariant and cross ratios are preserved. In ho-
mogeneous coordinates a central axonometry can
be expressed by a linear mapping, and there-
fore the images are called linear images. There
are several results on how to characterize per-
spective views among linear images (see, e.g.,
[6, 13, 7, 11, 2, 12, 8]).

In the generic case linear images are uncal-
ibrated. Such a linear image can, e.g., be ob-
tained by taking a photo of a given photo. It can
be proved that a linear image of a scene is always
an affine transform of a central perspective of the
same scene.
Singular value decomposition:
One technical tool from Linear Algebra, which
will be used in the sequel, is the singular value
decomposition of any matrix A. It expresses A

as a matrix product

A = U · diag(λ1, . . . , λr) · V
T

with orthogonal U, V , i.e., U−1 = UT and
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LinAlg
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Figure 2: Singular value decomposition

V −1 = V T . The non-zero entries (λ1, . . . , λr) in
the main diagonal of the central matrix are called
the singular values of A. They are uniquely de-
termined as the positive square roots of the eigen-
values of the symmetric AT · A, which are non-
negative.

There is an instructive geometric interpreta-
tion of this decomposition in dimension 2 (see
Fig. 2) which can easily be generalized into the
Euclidean n-space: Matrix A represents an affine
transformation which maps any unit circle into
an ellipse which might be degenerated. There
are pairwise orthogonal diameters of the unit cir-
cle which are mapped onto the axes of symme-
try of the corresponding ellipse. These particular
frames define the directions of principal distor-
tion for this affine map.

The singular values of A equal the semi-
axes of the ellipse. Therefore the singular values
are sometimes called the principal distortions of
this affine map. The orthogonal matrices U and
V T represent the coordinate transformations be-
tween the given frames and that of the principal
distortion directions.
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2. THE GEOMETRY OF IMAGE PAIRS

The geometry of pairs of central views has been
a classical subject of Descriptive Geometry. Im-
portant results are, e.g., due to S. FINSTER-
WALDER, E. KRUPPA [9], J. KRAMES, W.
WUNDERLICH, H. BRAUNER [1].
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Figure 3: Epipolar constraints in a
two-views-system

Uncalibrated case:
Let two central projections be given with centers
zi and image plane πi for i = 1, 2 . This refers to
the viewing situation in 3-space as displayed in
Fig. 3. In addition, let κ1, κ2 be collinear trans-
formations which map the images into π ′

1 and
π′′

2 , respectively. In this way we have defined a
general two-views-system consisting of two lin-
ear images. Any space point x different from the
two centers is represented by its views x′,x′′.

The basic geometric property of two-views-
systems results from the fact that for space points
x which are not aligned with the two centers, the
two rays of sight z1 ∨ x and z2 ∨ x are coplanar
(see Fig. 3). They are located in a plane δ

x
which

in both linear images appears in an edge view.
In the viewing situation the images of the pencil
of planes δ

x
constitute two perspective line pen-

cils. After applying the collinear transformations

κ1, κ2 there remain to projective line pencils, the
socalled epipolar lines. The centers z′

2 and z′′1 of
these pencils are called epipoles. As expressed
in the notation, each epipole is the image of one
center under the other projection. The projectiv-
ity is called epipolar constraint. We summarize:
Theorem 1: 1) For any two linear images of a
scene there is a projectivity between two partic-
ular line pencils

z′2(δ
′

x
) ∧− z′′1(δ

′′

x
)

such that two points x′,x′′ are corresponding,
i.e., images of the same space point, if and only if
they are located on corresponding epipolar lines.

2) Using homogeneous coordinates, there is a
matrix B = (bij) of rank 2 such that two points
x′ = (x′

0 : x′

1 : x′

2) and x′′ = (x′′

0 : x′′

1 : x′′

2) are
corresponding if and only if

2∑

i,j=0

bij x′

i x
′′

j = x′T · B · x′′ = 0 . (1)

The vanishing bilinear form in (1) defines a
correlation which is singular because of the rank
deficiency of the socalled essential matrix B.
Proof: Using homogeneous line coordinates, the
projectivity between the line pencils can be ex-
pressed as

(u′

1λ1 + u′

2λ2)R 7→ (u′′

1λ1 + u′′

2λ2)R

for (λ1, λ2) ∈ R
2 \ {(0, 0)}. x′ and x′′ are cor-

responding iff there is a nontrivial pair (λ1, λ2)
such that

(u′

1λ1 + u′

2λ2)· x
′ = 0

(u′′

1λ1 + u′′

2λ2)· x
′′ = 0 .

These two linear homogeneous equations in the
unknowns (λ1, λ2) have a nontrivial solution if
and only if the determinant vanishes. This gives
the stated bilinear form

(u′

1 ·x
′)(u′′

2 ·x
′′) − (u′

2 ·x
′)(u′′

1 ·x
′′) = 0 .
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There are singular points of this correspondance:
z′2 corresponds to all x′′, and vice versa all points
x′ correspond to z′′1. Therefore rk(bij) = 2 .
Calibrated case:
In the calibrated case we can express the essen-
tial matrix B in a particular form. For this pur-
pose it is necessary to specify the homogeneous
coordinates used in the bilinear relation (1): For
each image point we take its 3D coordinates with
respect to the camera frame as homogeneous 2D
coordinates (see Fig. 4).
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Figure 4: Epipolar constraints for
calibrated images

Theorem 2: In the calibrated case the essential
matrix B is the product of a skew symmetric ma-
trix and an orthogonal one, i.e.,

B = S ·R with ST = −S and R−1 = RT . (2)

Therefore the two singular values of B are
equal.

Proof: According to Fig. 4 the three vectors

z′ := z2 − z1, x′ and x′′

are coplanar. Therefore their triple product van-
ishes. However, we have to pay attention to the
fact that x′ and x′′ are given in two different cam-
era frames. Let

x1 = z′ + R · x2 (3)

be the conversion of the second camera frame
into the first one with an orthogonal R. Now the
complanarity is equivalent to

0 = det(x′, z′, R · x′′) = x′ · (z′×R · x′′).

We may replace the cross product by the product
of x′′ with a skew-symmetric matrix, i.e.,

z′×R · x′′ = S · R · x′′

with 


0 −z′z z′y
z′z 0 −z′x
−z′y z′x 0


, (4)

provided (z′x, z
′

y, z
′

z) are the coordinates of z′

with respect to the first camera frame. It is impor-
tant to notice that according to (3) the two factors
S and R define the relative position between the
two camera frames uniquely.
The singular values of B = S · R can either be
computed straight forward as the positive square-
roots of eigenvalues of BT · B, i.e., of ST · S =
−S · S. But we can also proceed in a more geo-
metric way:
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Figure 5: x 7→ S · x = z′ × x is the product
of an orthogonal projection, a 90◦-rotation,

and a scaling with factor ‖z′‖

The cross product z′ × x is orthogonal to the
plane spanned by z′ and x , and it has the length

‖z′ × x‖ = ‖z′‖ ‖x‖ sinϕ = ‖z′‖ ‖xn‖

where xn is the orthogonal projection of x in
direction of z′ (see Fig. 5). So, the mapping
x 7→ S · x is the composition of an orthogonal
projection, of a 90◦-rotation, and a scaling with
factor ‖z′‖ which in the sense of Fig. 2 reveals
the above-mentioned singular values of S.
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3. THE FUNDAMENTAL THEOREMS

What means ‘reconstruction’ from two images ?
The photos have been taken in a particular view-
ing situation. But afterwards we have only the
two images, and we know nothing about how
the camera frames where mutually placed in 3-
space. Hence, reconstruction means both, recov-
ering the viewing situation and recovering the de-
picted scene.

The problem of recovering a scene from two
or more images is a basic problem in Computer
Vision (see, e.g., [3, 4, 15, 5]). It is remark-
able, that sometimes in the cited books the au-
thors really refer to results which have already
been achieved in Descriptive Geometry (note,
e.g., the high estimation of E. KRUPPA’s results
[9] in [15]). However, Computer Vision focuses
on numerical solutions, and the use of computers
brought new insight and progress in this prob-
lem. Since measuring pixels in any image can be
carried out with standard software, it has become
possible to recover an object with high precision
from two digital images just by using a laptop.
Theorem 3: From two uncalibrated images
with given projectivity between epipolar lines
the depicted object can be reconstructed up to a
collinear transformation.

Sketch of the proof: The two images can be
placed in space such that pairs of epipolar lines
are intersecting:

For this purpose we start with a position
where the two images are coplanar and two cor-
responding lines are aligned. Then the two pen-
cils of epipolar lines are perspective with respect
to an axis a . Now we rotate one of the im-
age planes about this axis a . The corresponding
epipolar lines are still intersecting on a . Then we
specify arbitrary centers z1, z2 on the baseline z

which connects the two epipoles. This gives rise
to a reconstructed 3D object.

Any other choice of the viewing situation
gives a collinear transform of the previously re-
covered 3D object.

Theorem 4: (S. Finsterwalder, 1899)
From two calibrated images with given projectiv-
ity between epipolar lines the depicted object can
be reconstructed up to a similarity.

Sketch of the proof: In the corresponding bun-
dles of rays the pencils of epipolar planes δ

x
for

both projections need to be congruent. There is
a rigid motion of one camera frame such that
any two corresponding epipolar planes are co-
incident. For any choice of z2 relative to z1 on
the carrier line z of the unified pencil of planes
there exists a reconstructed 3D object. Any other
choice of z2 gives a similar 3D object.

In this sense the problem of recovering a
scene is reduced to the determination of epipoles.
This problem is equivalent to a classical problem
of Projective Geometry, the Problem of Projec-
tivity (see Fig. 6):
Given: 7 pairs of corresponding points (x′

1,x
′′

1),
. . . , (x′

7,x
′′

7).
Wanted: A pair of points (s′, s′′) (= epipoles)
such that the connecting lines with x′

i and x′′

i , re-
spectively, are included in a projectivity, i.e.,

s′(s′ ∨ x′

i) ∧− s′′(s′′ ∨ x′′

i ), i = 1, . . . , 7 .
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Figure 6: Problem of Projectivity

The Problem of Projectivity is a cubic prob-
lem. This follows from the following reasoning:
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Due to (1) the 7 given pairs of corresponding
points give 7 linear homogeneous equations

xT
i · B · x′′

i = 0, i = 1, . . . , 7 , (5)

for the 9 entries in the essential (3× 3)-matrix
B = (bij). The condition rk(B) = 2 gives the
additional cubic equation det B = 0 which fixes
all bij up to a common factor.

4. COMPUTING THE ESSENTIAL MATRIX

For noisy image points it is recommended to use
more than 7 points and to apply methods of least
squares approximation for obtaining the ‘best fit-
ting’ matrix B :

Let A denote the coefficient matrix in the lin-
ear system (5) of homogeneous equations for the
entries of B. Then the ‘least square fit’ B̃ is
an eigenvector for the smallest eigenvalue of the
symmetric matrix AT · A which minimizes

yT · AT · A · y = ‖A · y‖2

under the side condition ‖y‖ = 1 .
Any essential matrix has the rank 2, and in

particular in the calibrated case the two singular
values must be equal. In order to obtain such a
‘best fitting’ essential matrix B for our obtained
B̃, we use what sometimes is called the ’projec-
tion into the essential space’:

This is based on the singular value decom-
position of B̃, which has been presented in Sec-
tion 1. It factorizes B̃ as a matrix product

B̃ = U · D · V T , D = diag(λ1, λ2, λ3),

with orthogonal U, V . For the singular values of
B̃ we suppose λ1 ≥ λ2 ≥ λ3 .

Then in the uncalibrated case the best fitting
essential matrix reads

B = U · diag(λ1, λ2, 0) · V T . (6)

In the calibrated case

B = U ·diag(λ, λ, 0)·V T with λ =
λ1+λ2

2
(7)

is optimal in the sense of the Frobenius norm
‖A‖f for square matrices A (see, e.g., [10, 15]).
‖A‖2

f equals the trace of AT ·A and therefore the
square sum of the singular values of A.

In the uncalibrated case the solution B of (6)
gives

‖B̃ − B‖f = λ3

which is minimal among all rank 2 matrices. In
the calibrated case the solution B presented in (7)
yields the error

‖B̃ − B‖f =
√

(λ − λ1)2 + (λ − λ2)2 + λ2
3 ,

which is minimal among all possible essential
matrices.

The factorization B = S · R according to
Theorem 2 reveals already the relative position
of the two camera frames. Therefore we need

Theorem 5: The factorization of the essential
matrix B = U · D · V T , D = diag(λ, λ, 0), into
the skew symmetric matrix S and the orthogonal
matrix R reads:

S = ±U · R+ · D · UT , R = ±U · RT
+ · V T

where R+ =




0 −1 0
1 0 0
0 0 1


. (8)

Proof: It is sufficient to factorize the product of
the first two matrices by

U · D = S · R′,

because this implies immediately

B = S · (R′ · V T ), i.e., R = R′ · V T .

We focus on the affine 3D transformations which
are represented by the involved matrices:
• U ·D is composed from the orthogonal projec-
tion parallel to the z-axis, the scaling with factor
λ and the rotation U which transforms the z-axis
into the kernel of U · B.
• On the other hand, the skew symmetric matrix
S represents the orthogonal projection parallel z′

composed with a 90◦-rotation about z′ and a scal-
ing with factor ‖z′‖ (see Fig. 5).
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Figure 7: Given photos: Historical ‘Stadtbahn’ station Karlsplatz
in Vienna (Otto Wagner, 1897)
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Figure 8: Identifying 20 reference points

Figure 9: Epipolar lines
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Let R+ denote the matrix representing the
90◦-rotation about the z-axis. Then R+ is of the
form stated in Theorem 5. The product R+ ·D =
D ·R+ is skew-symmetric and thus we obtain the
following two solutions:

S = ±U · R+ · D · UT and R′ = ±U · RT
+ .

For the following reason, these are the only two
possible factorizations of the required type:
As matrix B represents an orthogonal axonom-
etry, the column vectors are the images of an
orthonormal frame. We know from Descriptive
Geometry that apart from translations parallel to
the rays of sight there are exactly two different
triples of pairwise orthogonal axes with images
in direction of the given column vectors. The two
triples are mirror images from each other. So, we
can’t expect more than two factorizations.

There are critical configurations where the
specified reference points are not sufficient to
determine the epipoles uniquely. This is, e.g.,
the case when only coplanar 3D points are cho-
sen as reference points. But there are also other
cases related to quadrics. For details see, e.g.,
[14, 15, 5]).

5. THE ALGORITHM

We summarize: The numerical reconstruction of
two calibrated images with the aid of any com-
puter algebra system (e.g., Maple) consists of the
following five steps:

1) Specify n > 7 pairs (x′

i,x
′′

i ), i = 1, . . . , n,
of corresponding points under avoidance
of critical configurations.

2) Set up the homogeneous linear system of
equations x′T

i ·B ·x′′

i = 0 for the unknown
fundamental matrix B. The optimal so-
lution B̃ is an eigenvector of the smallest
eigenvalue of AT · A with A as the coeffi-
cient matrix of this system.
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Figure 10: The result of the reconstruction

3) Based on the singular value decomposition
of B̃ compute the closest rank 2 matrix B

with two equal singular values.

4) Factorize B = S ·R as a product of a skew
symmetric matrix S and an orthogonal R

according to Eq. (8). This fixes the relative
position between the two camera frames.

5) In one of the camera frames compute the
approximate point of intersection between
corresponding rays z1 ∨ x′

i and z2 ∨ x′′

i ,
i = 1, 2, . . .

6) Transform the reconstructed coordinates of
points of the scene into any world coordi-
nate system.

Figs. 7, 8 and 9 show on example with the
determination of epipolar lines and epipoles. The
solution is displayed in Fig. 10.
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