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In kinematics a framework is called overconstrained if its continuous flexibility is caused

by particular dimensions; in the generic case a framework of this type is rigid. Famous

examples of overconstrained structures are the Bricard octahedra, the Bennett isogram,

the Grünbaum framework, Bottema’s 16-bar-mechanism, Chasles’ body-bar framework,

Burmester’s focal mechanism or flexible quad meshes. The aim of this paper is to present

some examples in detail and to focus on their symmetry properties. It turns out that only

for a few a global symmetry is a necessary condition for flexibility. Sometimes there is a

hidden symmetry, and in some cases, e.g., at the flexible type-3 octahedra or at discrete

Voss-surfaces, there is only a local symmetry. However, there remain overconstrained

frameworks where the underlying algebraic conditions for flexibility have no relation to

symmetry at all.
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1. Introduction

Let F = (V,E) be a bar-and-joint framework in the d-dimensional Euclidean space
E
d with the vertex set

V = {x1, . . . ,xv}, xi ∈R
d for all i∈ I = {1, . . . , v}

and the edge set
E ⊂ {(i, j) | i < j, (i, j) ∈ I} .

We denote the edge lengths by

lij := ‖xi − xj‖ for all (i, j) ∈E.

We call each v-tupel (x′

1, . . . ,x
′

v)∈R
vd with the same edge lengths lij for

all (i, j) ∈E a realization of F , and of course we are interested in mutually
incongruent realizations.

F is called continuously flexible or — by short — flexible, if its spatial form
can be changed analytically with respect to k parameters, k > 0, while its edge
lengths remain unaltered. The maximum k is called degree of freedom (d.o.f.). The
different realizations are also called flexions, and the continuous movement of F
is called a self-motion.
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In the generic case a parameter count reveals that for a framework with v
vertices and e edges in E

d we obtain

k= vd− e−
d(d+ 1)

2
(1.1)

as the degree of freedom. A framework is called overconstrained if it is flexible
due to its particular edge lengths though in the generic case its d.o.f. would be
≤ 0 . On the other hand, in particular cases the degree of freedom of a framework
can be 0 though the equation above gives k≥ 1; as an example look at a four-bar
in E

2, i.e., v= e=4, where one edge length equals the sum of the three other
lengths.

In the sequel we focus on overconstrained frameworks. We present a personal
selection of different examples and explain in a more or less unified mathematical
way why they are flexible. Among a few of them the symmetry of the framework
is crucial for its flexibility, and the self-motion is symmetry preserving. In general,
continuous flexibility is of algebraic nature, and the challenge is to find the
geometric meaning of the algebraic conditions.

2. Flexible bipartite frameworks and Ivory’s theorem

A framework is called bipartite if its edge graph is bipartite, i.e., its vertices (or
knots) can be subdivided into two classes {a1, . . . ,am} and {b1, . . . ,bn} such that
the edges (or bars) always connect vertices from different classes. It turns out that
the flexibility of bipartite frameworks is always related to Ivory’s theorem [1].

To recall, the two-dimensional version of Ivory’s theorem states that in the
orthogonal net of confocal conics each curvilinear quadrangle has diagonals of
equal length (Fig. 1a). In other words: If α is an affine transformation mapping
the conic k onto a confocal conic k′ while the axes of symmetry are kept fixed,
then

‖α(x) − y‖= ‖x− α(y)‖ for all x,y ∈ k.

Nomenclature

E
d d-dimensional Euclidean space

S
2 sphere in E

3

Ai, Bj , Vk, . . . points, vertices of a framework
ai,bj ,xk, . . . position vectors of points or vertices, but also points
‖v‖ norm of the vector v
εi, ϕk, . . . planes
f0,f1, . . . faces (facets) of a polyhedron or quad mesh
Li,Rj tetrahedra
α, β, γ, ϕi, ψ, . . . angle measures
Σ,Σ′,Σ1,Σ2, . . . systems (= rigid bodies) involved at a mechanism
Σj/Σk motion of system Σj w.r.t. system Σk

Ijk instant axis of motion Σj/Σk
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Figure 1. Ivory’s theorem and two incongruent realizations of a bipartite framework

This is also valid for singular α. It turns out that corresponding points x and
α(x) are always located on the same second conic of the confocal set (note the
hyperbolas h1, h2 in Fig. 1a).

In Fig. 1b it is shown how by Ivory’s theorem a planar bipartite framework
with ai ∈ k and bj ∈ k

′ can be transformed into an incongruent realization with
a′i ∈ k

′ and b′

j ∈ k.

Also the converse statement is true — and even in each dimension [2]: For
any two incongruent realizations in E

d there is a displacement of one of them
such that finally the two realizations are in “Ivory position”, i.e., the vertices
a1, . . . ,am,b

′

1, . . . ,b
′

n and a′1, . . . ,a
′

m,b1, . . . ,bn are placed on two confocal
quadrics of the same type, respectively, and the pairs ai 7→ a′i and b′

j 7→ bj are

corresponding under an affine transformation. Confocal quadrics in E
d, d≥ 3, are

characterized by confocal sections with all hyperplanes of symmetry.

(a) Dixon’s flexible frameworks

(a)

a1 a2 a3

b1

b2

b3

Dixon I

(b)

a1 a2

a3a4

b1 b2

b3b4

Dixon II

Figure 2. The two types of flexible bipartite frameworks in E
2
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A.C. Dixon [3] proved in 1899 that there are exactly two types of continuously
flexible bipartite frameworks in the Euclidean plane E

2. A new proof based on
algebraic methods can be found in [4].

At type I (Fig. 2a) the two classes of vertices are placed on two orthogonal
lines, e.g., the two axes of a cartesian coordinate system. For any given real
constant c sufficiently close to 0 the transformation

ai = (xi, 0) 7→ a′i = (
√

x2i + c, 0), bj = (0, yj) 7→b′

j = (0,
√

y2j − c)

preserves all distances ‖ai − bj‖=
√

x2i + y2j = ‖a′i − b′

j‖.

At the second type of flexible bipartite planar frameworks (Fig. 2b) the
symmetry is essential: The vertices of two rectangles with two common axes of
symmetry constitute the classes of vertices. Again, Ivory’s theorem can be used
to prove the flexibility (see Fig. 3a):
There is a one-parameter set of conics k passing through a1, . . . ,a4. They all
have common axes of symmetry. For each k there is a confocal conic k′ through
b1, . . . ,b4. Hence, by Ivory’s theorem we can switch to conjugate points thus
obtaining a one-parameter set of incongruent realizations of the same framework.

Ivory’s theorem is also true on the sphere S
2 (Fig. 3b). Therefore the spherical

version of the Dixon-II framework is again flexible. It is called Bottema’s 16-bar
framework [5, 6].

(a) a1 a2

a3a4

b1
b2

b3b4

k

k′

(b)

x

y

k

x′

y′

k′

Figure 3. (a) Proving the flexibility of Dixon II by Ivory’s theorem; (b): Ivory’s theorem on the
sphere.

(b) Flexible bipartite frameworks in 3-space

There is a series of flexible bipartite frameworks in 3-space which can be seen
as spatial analoga of the planar Dixon frameworks:
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• Let a1, . . . ,a16 be corners of two boxes and b1, . . . ,b8 be corners of a third
box such that all three boxes are symmetric with respect to a cartesian
frame [7].

• The vertices a1, . . . ,am are specified on two conics which are located in
parallel planes and symmetric with respect to a cartesian frame, while
b1, . . . ,b8 are the corners of a box symmetric with respect to the same
frame [7].

• a1, . . . ,am are located on a conic and b1, . . . ,bn are arbitrary points in
3-space [8].

• When both classes {a1, . . . ,am} and {b1, . . . ,bn} are coplanar and their
carrier planes are orthogonal then the degree of freedom of the bipartite
framework is at least k= 3 [7].

(c) Henrici’s flexible hyperboloid and Bricard’s octahedra

Figure 4. Henrici’s flexible hyperboloid (courtesy: G. Glaeser)

At the end of this section we focus on two flexible structures which are
related to the bipartite frameworks mentioned before: For any two confocal one-
sheet hyperboloids the affinity according to Ivory’s theorem (analogue to Fig. 1a)
preserves distances along the generators. This is the basis for Henrici’s flexible
hyperboloid [9, 10]:

An arbitrary number of generators of both reguli of an hyperboloid is
materialized by rods (see Fig. 4) with a spherical joint at each point of intersection
between two rods. In the flat limiting poses the rods are either tangent to the
focal hyperbola or tangent to the focal ellipse, the singular surfaces in the range
of confocal hyperboloids. Note that this is no more a pure framework but there
are hidden constraints since the rods remain aligned during the self-motion.

Due to R. Bricard 1897 [11] there are exactly three types of flexible octahedra.
Octahedra of type 1 have a line-symmetry (Fig. 5) and those of type 2 a planar
symmetry with exactly two vertices located in the plane of symmetry. In both
cases the flexibility can be proved using symmetry arguments, only.

Figure 5 shows two particular examples of flexible octahedra of type 1: In
both cases the faces b1b2a2 and b3b4a1 have been omitted in order to avoid
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(a) b1
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b3

b4

a1

a2

(b)

b1

b2

b3

b4

a1

a2

Figure 5. Two particular examples of flexible octahedra where two faces are omitted. Both have
an axial symmetry ((a) [12, p. 77]; (b) [13]).

self-intersections. The example (a) is due to W. Blaschke [12]; the displayed pose
is related to a cube. The example (b) is related to a regular octahedron and has
been found by W. Wunderlich [13]. This example admits two flat poses. In Fig. 6
the unfoldings of these flexible examples are displayed.

b1 b2

b3 b4b4 a1

a2a2

b1

b2

b3

b4
b4 a1

a2a2

Figure 6. Nets of the flexible octahedra displayed in Fig. 5.

The definition of Bricard’s flexible octahedra of type 3, which have no global
symmetry, is more complex (see, e.g., [14]). One approach is as follows. The
octahedron can be seen as a bipartite framework. The apices a1,a2 of the double-
pyramid define one class, the vertices b1, . . . ,b4 of the common base quadrangle
the other. Therefore again Ivory’s theorem can be used to prove that Bricard’s
examples are the only octahedra which are flexible [15]. G. Nawratil [16] used a
different approach when he recently determined all flexible octahedra with one or
more vertices at infinity. One type among them is even free of self-intersections.

Figure 7 shows an arbitrary pose a1, . . . ,b4 with the quadrangular basis on
a one-sheet hyperboloid and as second realization a flat pose a′1, . . . ,b

′

4 where
the sides of the quadrangle are tangent to the focal ellipse e′ of the hyperboloid.
This flat pose cannot be chosen arbitrarily but for a given quadrangle b′

1, . . . ,b
′

4
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the apices a′1,a
′

2 must be located on a particular algebraic curve of degree 3,
a strophoid [17, Theorem 2]. This curve is the locus of focal points of conics
tangent to the sides of b′

1, . . . ,b
′

4. The same curve plays a role at Burmester’s
focal mechanism (note Fig. 11).

a1
a2

b1

b3

b2

b4

a′

1
a′

2

b′

1

b′

2
b′

3 b′

4

e
e′

Φ

Figure 7. Bricard’s flexible octahedron of type 3 and Ivory’s theorem

Ivory’s theorem is also true in pseudo-Euclidean spaces as well as in spaces
of constant curvature [18]. Therefore there are analogues of the flexible bipartite
frameworks in other spaces. E.g., the analogues of the three types of flexible
octahedra exist also in the hyperbolic 3-space [19].

3. Particular overconstrained flexible mechanisms

Here we present a medley of different flexible structures. Not all are pure
frameworks; sometimes there are hidden constraints like collinearities or
coplanarities of vertices.

(a) Grünbaum’s framework

The initial pose of Grünbaum’s framework is highly symmetrical. It admits the
full icosahedral group because it consists of the edges of the 10 regular tetrahedra
which can be inscribed into a regular pentagon-dodecahedron. With respect to
the dodecahedron, the tetrahedra can be devided into two classes, the left ones
L1, . . . ,L5 and the right ones R1, . . . ,R5. We choose the indices such that Li and
Ri are complementary tetrahedra inscribed into the same cube.

Each vertex of the dodecahedron is shared by two tetrahedra. The left Li

contains the left diagonals of the adjacent pentagons, the right Rj contains the
right diagonals. We use the ordered pair of indices ij, i 6= j, as label of this vertex.

Grünbaum’s framework consists of 20 knots and 60 bars. It is at the same
time a body-bar framework, but the included ten tetrahedra penetrate each other.
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Figure 8. The two types of one-parameter self-motions of Grünbaum’s framework

Though eq. (1.1) gives k=−6, this framework is flexible. There are two types of
one-parameter self-motions which preserve one rotational symmetry:

According to R. Connelly [20] the tetrahedron L1 can perform a one-parameter
motion such that its vertices 12, 13, 14 and 15 remain in the planes ε2, . . . , ε4 of
symmetry through the face axis f , respectively (see Fig. 8a). By iterated rotations
about f and reflections in planes through f the movement can be continued to
all other tetrahedra of the framework. Fig. 9a shows the traces of the vertices of
L1 under this self-motion which is rational of degree 4 and of type a) according
to the classification given in [21].

(a) ε2

ε3

ε4

ε5

12 13

14

15

L1

(b)

12=53

13

14=23

34=25

45=31

41

52

51=42

L1=R3

L2=R4L3=R5

L4=R1

L5=R2

f

Figure 9. (a) Movement of L1 under a self-motion of the Grünbaum framework preserving the
fivefold symmetry about a face-axis. (b) Pose of bifurcation into a self-motion with d.o.f. = 2.
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At a real-world model the movement stops when different vertices come
together. However, one can dissolve some joints, and after reassembling the
structure the movements continues. The 10 tetrahedra fall apart and form a
ring. Then they reach a pose with coinciding pairs of tetrahedra [22]. Here the
5 doubled tetrahedra sit on the faces of a flexible five-sided pyramid without
basis (see Fig. 9b). This allows a bifurcation from the one-parameter symmetry-
preserving self-motion into a two-parameter motion, which is totally unsymmetric.
It is surprising that at this framework the degree of freedom increases by waiving
the symmetry. However, it makes sense to see pairweise coinciding tetrahedra as
particular case of a local symmetry.

In Fig. 8b another one-parameter self-motion of the Grünbaum framework is
displayed [23]: This time the threefold symmetry with respect to a vertex axis v
is preserved. The movement of L1 is such that 12 and 13 remain in the planes φ2,
φ3 of symmetry, respectively, while 14 and 15 preserve their distance to the axis
v. At the same time the vertices 45 and 54 remain on the axis v which therefore is
a fixed axis of symmetry for all poses of L4, R4, L5, and R5. 120

◦-rotations about
v and reflections in φ1, φ2 and φ3 define the positions of all other tetrahedra.

(b) Chasles’ body-bar framework

This framework consists of two planar bodies Σ,Σ′ in E
3 and n connecting

bars. The pairwise different anchor points a1, . . . ,an ∈Σ and a′1, . . . ,a
′

n ∈Σ′ are
projectively related and lie on conics k⊂Σ and k′ ⊂Σ′, respectively (see Fig. 10).
When each achor point represents a spherical joint between bar and body, then a
parameter count gives k=6− n as degree of freedom.

M. Chasles [24] recognized 1861 with methods of statics, that under these
conditions for any n there exists a spatial motion of Σ relative to Σ′ which keeps
the distances ‖ai − a′i‖ fixed for all i∈ {1, . . . , n}. R. Bricard [25, p. 3, footnote 2]
emphasized the kinematic meaning of Chasles’ statement — without giving any
proof.

We can prove the flexibility by the fact that (in the generic case) the lines
connecting corresponding points of two projectively related conics constitute
an algebraic ruled surface of degree 4. Such a ruling is always included in a
linear line-complex, an argument which is also stressed by K. Wohlhart [26]. The
existence of such a linear line-complex is necessary and sufficient for infinitesimal
flexibility. Since each pose of our framework is infinitesimally flexible, we obtain
by integration continuous flexibility, provided there is no stillstand in the initial
pose, e.g. caused by two aligned bars.

For n=6 Chasles’ mechanism is overconstrained. This is also important for
robotics since after replacing the six bars aia

′

i by telescopic legs our framework
becomes a particular parallel manipulator, a planar Stewart Gough platform (SGP
by short). When at a planar SGP all pairs ai 7→ a′i, i=1, . . . , 6, are corresponding
under a projectivity between two conics k, k′, the SGP is singular in each pose,
hence architecturally singular. A classification of all architecturally singular SGPs
has been given by A. Karger [27] in 2003.

The following statement has been presented in [28]: Each planar SGP can be
extended by additional legs without restricting its mobility. The method applied
in the proof of [28] can also be used here to prove the continuous flexibility of
Chasles’ framework for any n directly, i.e., not via infinitesimal flexibility.
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Figure 10. Chasles’ body-bar framework; ai 7→

a′

i is a projectivity between the conics k and k′.
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Figure 11. Burmester’s focal mechanism; the
point triples (A0, A

′, A), (B0, B
′, B) and

(A,C′, B) remain collinear during the self-
motion.

(c) Burmester’s focal mechanism

For each four-bar A0B0BA (see Fig. 11) there are points F such that
additional bars connecting F with appropriate intermediate points on the sides
do not restrict the flexibility. This has been found 1893 by L. Burmester [29], and
he called it a focal mechanism since point F must be a focal point of any conic
tangent to the sides of the quadrangle A0B0BA. The locus of these focal points
has already been mentioned before in connection with the flat poses of flexible
type-3 octahedra.

A.C. Dixon [3] proved 1899 that the angle ψ=<) A0A
′F is congruent to the

angle <) BB′F . For further relations see, e.g., [30, pp. 125–130]. The angles at F
are congruent to the interior angles of the quadrangle, e.g., <) C0FB

′ =<) A0AB
(note Fig. 11). Hence the four interior angles in the quadrangle must sum up to
360◦, and therefore this mechanism has no spherical analogue! Only the property
is preserved on the sphere that under the Dixon condition the composition of the
two fourbars A0C0FA

′ and C0B0B
′F is reducible [31] (compare Fig. 14b).

(d) The Bennett isogram

Due to G.T. Bennett [32] in 1914 there is a flexible kinematic chain consisting
of four cyclically ordered systems Σ1, . . . ,Σ4 with revolute joints between any
two consecutive bodies. When on each revolute axis two points are fixed and each
body is replaced by a tetrahedron, we obtain a flexible framework with 8 vertices
and 20 bars. Eq. (1.1) gives d.o.f= 24− 20− 6 =−2.

We give a short proof for its flexibility and start with a skew isogram, i.e., a
non-planar quadrangle abcd where opposite sides are of equal length,

a := ‖a− b‖= ‖c− d‖, b := ‖b− c‖= ‖d− a‖.

We obtain it from a planar parallelogram by bending about one diagonal through
the signed angle γ (see Fig. 12a).

Each skew isogram has a line-symmetry: A rotation through 180◦ (half-
rotation) about the line m connecting the midpoints of the diagonals exchanges
a with c as well as b with d. This can be concluded from the congruence of the
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Figure 12. The Bennett isogram as a flexible 4R kinematic chain.

two triangles dab and bcd. It can also be proved by computation as follows: The
sum and the difference of the two equations

(a− b)2 − (c− d)2 = 0 and (b− c)2 − (d− a)2 =0

yields after a factorization like x2 − y2 = (x+ y)(x− y)

(a− c) · (a− b+ c− d) = (b− d) · (a− b+ c− d) = 0.

This expresses directly that the connectionm of the midpoints of the two diagonals
is orthogonal to both diagonals.

The convex hull of this skew isogram is a tetrahedron with the basis dab and
the apex c. Let α and β denote the (signed) dihedral angles along the base-edges
ab and ad, respectively (Fig. 12a). When in the congruent triangles abc or cda
the heights on the sides with length a, b are denoted by ha and hb, resp., then the
height of the apex c over the base plane can be expressed in two ways as

ha sinα= hb sinβ, while aha = b hb.

Both sides of the second equation give the doubled area of the triangles mentioned
before. After elimination of ha and hb we get the basic relation

a sin β = b sinα.

There is a two-parameter set of mutually incongruent skew isograms sharing
the lengths a and b, because the lengths of the diagonals can be chosen
independently — within certain limits. We extract a one-parameter set by keeping
the dihedral angle α fixed. According to the basic relation β remains constant,
too. Since α and β are also the angles between normals of the tetrahedron (see
Fig. 12a), our one-parameter set gives flexions of a kinematic revolute-chain with
four links (Fig. 12b). Each side of our isogram represents one link Σi, when at
each endpoint the common perpendicular with the neighboring side serves as the
axis of rotation Ii i+1 with respect to the neighbor link Σi+1.

According to [33] the Bennett isogram is the only flexible 4R kinematic chain.
When Σ1 is kept fixed then point d∈Σ4 remains on a circle with center a and
axis I41 (see Fig. 12b). On the other hand, according to the rotations about I21
and I32 point d∈Σ3 must be placed on a rotational cyclide [34, 35]. Therefore,
the mobility of the Bennett isogram is also related to the existence of different
families of circles on rotational cyclides.
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Due to J. Krames [36] the relative motion between opposite links is line-
symmetric; the axes m of the half-rotations form a regulus of a hyperboloid. The
kinematic image of this motion on the Study-quadric is a conic [33, 37]. Therefore
this motion serves also as a sort of ‘primitive’ in motion design [38].

(e) 6R kinematic chains

There is a list of about 30 flexible closed 6R chains including symmetric and
non-symmetric ones. They all are overconstrained as eq. 1.1 gives k= 0.

Recently H.-P. Schröcker [39] could show that the flexibility is related to a
factorization of a monic cubic polynomial P (t) over the ring of dual quaternions
into linear factors

P (t) = (t− h1)(t− h2)(t− h3),

where h1, h2, h3 represent rotations. This most interesting result offers a new
strategy to find flexible examples, and it reveals clearly that not symmetry but
an algebraic property is decisive for continuous flexibility.

4. Flexible Kokotsakis meshes

The following structure is named after Antonios Kokotsakis [40, 41]: A Kokotsakis
mesh is a polyhedral structure consisting of an n-sided central polygon f0
surrounded by a belt of polygons (Fig. 13). Each side ai, i= 1, . . . , n, of f0 is
shared by a polygon fi. At each vertex Vi of f0 four faces are meeting.

V1

V2

V3

V4

f0

f1

f2

f3

f4

a1

a2

a3

a4

Figure 13. Kokotsakis mesh for n=4.

Each face is a rigid body; only the dihedral angles between adjacent faces can
vary. An open problem until recently is: Under which conditions a Kokotsakis
mesh with n≥ 4 is continuously flexible ? The answer on this question is of course
basic for classifying the flexible compounds of Kokotsakis meshes like quad meshes
[42] and for rigid origami, i.e., for exact paper folding [43]. In the case n=3 the
posed problem is equivalent to the classification of flexible octahedra (note [16]).

Let us focus on the case n=4. In the kinematic sense the polygons f0, . . . ,f4
represent different systems Σ0, . . . ,Σ4. We keep f0 ⊂Σ0 fixed. The sides ai of f0
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are instantaneous axes Ii0 of the relative motions Σi/Σ0, i=1, . . . 4. The relative
motion Σi+1/Σi between consecutive systems is a spherical four-bar mechanism.

The lengths of the sides a1, . . . , a4 of f0 have no influence on the flexibility
of the mesh, only their directions. Hence, we can draw the parallels to all axes
through a fixed point in space thus obtaining the spherical image. A Kokotsakis
mesh is flexible if and only if its spherical image is flexible.

The faces meeting at Vi correspond at the spherical image to a spherical four-
bar. The interior angles αi, βi, γi, δi at Vi are equal to the side lengths of the
corresponding four-bar (see Fig. 14). A rotation of f1 about a1 = I10 through the
angle ϕ1 with respect to f0 corresponds in the spherical image to a rotation of
the bar I10A1 about I10 through ϕ1. The transmission via V1 to f2 corresponds
to the transmission on the sphere via the coupler A1B1 to the rotation of the bar
I20B1 about I20 through ϕ2.

(a)

V1

V2

V3

V4

f0 ⊂Σ0

f1 ⊂Σ1

f2 ⊂Σ2

f3 ⊂Σ3

I10

I20

I30

α1

β1

γ1

δ1

α2

β2 γ2

δ2

(b)

I10
I20

I30

A1

B1

A2

B2

ϕ1
ϕ2

ϕ3

α1 β1

γ1

δ1

α2

β2

γ2

δ2

Figure 14. (a) Transmission from f1 to f3 via V1 and V2. (b) The composition of two spherical
four-bars.

A Kokotsakis-mesh for n= 4 is flexible if and only if the transmission from
f1 to f3 via V1 and V2 shares a component with the transmission via V4 and V3.
In this case the transmission from the input angle ϕ1 to the output angle ϕ3 of
f3 can be decomposed in two ways by two spherical four-bars. Fig. 15 shows an
example. The composition of the four-bars I10A1B1I20 and I20A2B2I30 is the same
as the product of I10A

′

1B
′

1I
′

20 and I ′20A
′

2B
′

2I30. As a control, there is a second pose
depicted in lightblue. By the way, the marked angle ψ is the spherical analogue
to the Dixon angle ψ marked in Fig. 11.

For n=4 there are 5 types of flexible Kokotsakis-meshes known until recently
[44]. In the sequel we use the term fold for triples of edges where at each vertex Vi
opposite edges are combined. In view of Fig. 13 we can distinguish between two
horizontal folds (one includes V4, V1, the other through V2, V3) and two vertical
folds (one through V4, V3, the other through V1, V2).

I. Planar-symmetric type: The Kokotsakis-mesh has a planar symmetry
exchanging V1 with V4 and V2 with V3.
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Figure 15. The transmission from ϕ1 to ϕ3 by the four-bars I10A1B1I20 and I20A2B2I30 has a
common component with that by I10A′

1B
′

1I
′

20 and I ′20A
′

2B
′

2I30.

II. Translational type: There is a translation with V1 7→ V4 and V2 7→ V3
mapping f2 to f4.

III. Isogonal type [40]: A Kokotsakis mesh is flexible when at each vertex Vi
opposite angles are either equal or complementary, i.e.,

αi = βi, γi = δi or αi = π − βi, γi = π − δi.

In this case the transmission ϕi 7→ϕi+1 by the spherical four-bars splits
into two linear functions, when expressed in terms of the half angle tangents:

tan ϕi+1

2
= fi+1 i tan

ϕi

2
with fi+1 i =

sinαi ± sin γi
sin(αi − γi)

.

Additionally, the product of factors must obey f21f32f43f14 =1 .
This condition is fulfilled as soon as there exists a pose which is non-flat
at each each vertex V1, . . . , V4. A discrete Voss-surface is a composition of
flexible Kokotsakis meshes of this type [42], e.g., Miura-ori. By the way,
also at flexible type-3 octahedra (see Fig. 7) the quadruples of faces at
each vertex a1, . . . ,b4 form an isogonal pyramid; hence there is a local
symmetry though these octahedra are globally unsymmetric.
According to G. Nawratil [45] there is a generalized flexible isogonal type:
Even if only at two of the four vertices V1, . . . , V4 opposite angles are equal
or complementary, it can happen that one component of the transmission
ϕ1 7→ϕ3 is decomposable in two ways.

IV. Orthogonal type or T-flat [41]: Here the horizontal folds are located in
parallel (say: horizontal) planes and the vertical folds in vertical planes.

V. Line-symmetric type [44]: A half-rotation maps the pyramid at V1 onto
that of V4; another one exchanges the pyramids at V2 and V3. Additionally
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δ1 + δ2 = α1 + β2 must hold together with the “Dixon angle condition”
(note angle ψ at A1 and B2 in Fig. 15)

sinα1 sin γ1 : sin β1 sin δ1 : (cosα1 cos γ1 − cos β1 cos δ1) =
± sin β2 sin γ2 : sinα2 sin δ2 : (cosα2 cos δ2 − cos β2 cos γ2).

Due to Kokotsakis [40, 42] the tessellation of the plane by congruent convex
quadrangles, generated by iterated point-reflextions, yields a flexible quad
mesh [46]. Here each included Kokotsakis mesh is of type V.

5. Conclusion

We presented a list of overconstrained frameworks and related flexible structures
and we explained why they are flexible. Of course, we didn’t claim completeness.
Personal interest and some common properties were the only motivation why we
selected only these examples and no others.

Sometimes the flexibility is a consequence of a symmetry, and the self-motion
preserves this symmetry, e.g., at Dixon I, Grünbaum’s framework, Bricard’s
flexible octahedra of types 1 and 2, and the Bennett isogram. However, in the
majority of cases particular algebraic properties are responsible for the fact that a
structure with particular dimensions is continuously flexible though in the generic
case the structure is rigid.

Some of the presented examples date back to the 19th century; others have
been detected recently. It turned out that in many cases the flexibility can be
concluded from Ivory’s theorem. Since this holds for each dimension and in
different metrics, the related mechanisms often have analogues in other spaces.
But there are also examples without any counterparts in other spaces, e.g.,
Burmester’s focal mechanism.

Generally speaking, there is no ‘kings-road’ for proving the flexibility of
overconstrained structures. Different types require different methods. But this
is always a challenge for kinematicians.
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