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Abstract—This is an overview on flexible frameworks. 
After the definition of continuous flexibility as well as 
infinitesimal flexibility of different order, the paper fo-
cuses on geometric characterizations of flexible cases, 
thus revealing that structures which look rigid can still 
be flexible due to their particular geometric properties. 
Some of the basic theorems are presented together with 
their proofs.1  
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I.  INTRODUCTION  

This lecture presents an overview on flexible struc-
tures like polyhedra and frameworks: Which conditions 
are necessary and sufficient for flexibility, which metric 
or combinatorial properties must change or remain con-
stant under flexing? 

The first important result in this field claims that 
every convex polyhedron is rigid; this is due to A. L. 
Cauchy 1813 [7]. On the other hand, R. Bricard classi-
fied 1897 [5] all flexible octahedra. But these flexible 
polyhedra have self-intersections.   

Since then, questions around this topic attracted 
many prominent mathematicians like R. Bricard,  H. 
Lebesgue, M. Dehn, W. Blaschke, N. V. Efimov, W. 
Wunderlich, A. D. Alexandrov, and A. V. Pogorelov. 
Nevertheless, a few outstanding results were proved 
rather recently: 

1977 R. Connelly [8] constructed a flexible polyhe-
dron without self-intersection, topologically a ‘flexing 
sphere’. 1985 R. Alexander proved that every flexible 
polyhedron preserves its total mean curvature during the 
flex [1]. 1995 I. Sabitov proved the famous Bellows 
Conjecture stating that for every flexible polyhedron the 
volume keeps constant during the flex [14,9]. According 
to V. Alexandrov [3] Sabitov’s result is of algebraic na-
ture, while R. Alexander’s result stems from analysis. 
Recent problems around this topic are addressed in [4]. 

The question whether the edge lengths of a polyhe-
dron or – more generally – of a framework determine its 
planar or spatial shape uniquely, is also important for 
many engineering applications, e.g., for mechanical or 
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constructional engineers, for biologists in protein model-
ling or for the analysis of isomers in chemistry. 

II. DEFINITION OF RIGIDITY AND FLEXIBILITY 

Let us return to Cauchy’s basic result on the rigidity 
of any convex polyhedron. Here we think of a polyhe-
dron made from cardbord, with planar faces, but with 
variable dihedral angles between any two faces sharing a 
common edge. It is quite natural to call a polyhedron 
flexible, if its shape can continuously vary without 
changing the metric of its faces. Otherwise the polyhe-
dron is called rigid. It turns out that the borderline be-
tween flexibility and rigidity is not as strict as one might 
conjecture. There are different degrees of flexibility to 
distinguish.  

On the other hand, we can also distinguish between 
global and local rigidity. We call a polyhedron globally 
rigid when its shape is uniquely defined by its unfolding. 
With the term ‘shape’ we mean its spatial form – apart 
from movements in space. A polyhedron is called locally 
rigid, when it is not flexible, but their unfolding can ad-
mit mutually incongruent realizations.   

Any tetrahedron, i.e., any three-sided (non-flat) py-
ramide is globally rigid. However, a regular octahedron, 
i.e., a double-pyramide erected over a square with 8 con-
gruent triangular faces is no more globally rigid. There is 
a convex form, which is locally rigid. But besides, we 
can re-assemble the structure by erecting both four-sided 
pyramides to the same side. Then it is no more convex, 
each face is two-fold covered by originally different 
faces. Thus we come up with only one four-sided pyra-
mide without basis, and this is even flexible. It turns out 
that the computation of the spatial from of any four-sided 
double-pyramide, i.e., of any general octahedron with 
given unfolding is an algebraic problem of degree 8. 
Hence, up to 8 different realizations are possible. Apart 
from particular cases, each of these realizations is locally 
rigid.    

This demonstrates already that one has to be careful 
with the terminology. Hence we start with some defini-
tions, and in the sequel we see polyhedra not as piece-
wise linear surfaces, but as wireframes, i.e., as frame-
works. This means we concentrate on its edges only. If 
not all faces are triangular, we must insert additional 
edges to keep their faces planar. When only checking the 
rigidity of any polyhedron, we can replace a face with 
more than 3 edges by a pyramide erected over this face. 
Finally, it should be noted that we don’t care about tech-
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nical problems like stiffness of edges and clearances 
along the hinges. We just focus on the geometry. 

Definition 1:  A framework F  in IR d  consists of a set 

,..., } IR{ d
vV ⊂= 1x x  of vertices and a set E  of edges, 

{( , ) | , 1 , }E i j i j i j v= < ≤ ≤ . For any edge i jx x  of our 

framework F , i.e., for ( , )i j E∈ , the length is denoted 

by 0ijl > , and we set 2 2( , ) : || ||ij i j i j ijf l= − −x x x x .  

This framework is called flexible, if there is a continuous 
family tF  of frameworks for 0 1t≤ ≤  with  0F F=  and 

( ( ), ( )) 0ij i jf t t =x x  for all  ( , )i j E∈ , provided there are 

at least two vertices which do not keep their distance 
constant. We call the family tF , 0 1t≤ ≤ , a flex of F . 

 We say, the edge set E  defines the combinatorial 
structure of F . By the request that at least one distance 
between vertices does not remain constant during the 
flex, we exclude trivial flexes, i.e., pure motions of the 
framework as a rigid body, expressable in matrix form 
by ( ) ( ) ( )i it t t= +x a A x  with ( ) IRdt ∈a  and an or-

thogonal d d× -matrix ( )tA , i.e., 1T −
=A A . The condi-

tions for keeping the lengths of edges constant are of 
algebraic nature. Hence, the flex is not only continuous 
but analytic. Therefore the ( )i tx  can be expanded into 

Taylor series. This is the basis for the following defini-
tion. 

 
Figure 1.   Projection Theorem 

Definition 2:  A framework F  in IR d  is called in-

finitesimally flexible of order n  if there is a polynomial 

function ,1 ,( ) ... n
i i i i nt t t= + + +z x x x  for each vertex ix  

such that the replacement of ix  by ( )i tz  in the distance 

function ( , )ij i jf x x  gives a function with a zero at 0t =  

of multiplicity n>  for all ( , )i j E∈ .  

The first derivative ,1ix  of ( )i tz  at 0t =  is called veloc-

ity vector, the second derivative ,22 ix  acceleration vec-

tor of vertex ix . In order to exclude trivial flexes, the 

coefficients of t  in the polynomial functions, i.e., the 
velocity vectors 1,1 ,1,..., vx x must not originate from any 

motion of F  as a rigid body, i.e., by an instantaneous 
motion with ,1i i= +x s S x  with IR∈

ds  and a skew-

symmetric d d× -matrix S , i.e.,  = −
TS S . Each con-

tinuously flexible framework admits a nontrivial analytic 
flex and is therefore also infinitesimally flexible of any 
order. 

The conditions for a framework of given combinato-
rial structure to be infinitesimally flexible of given order 

can be obtained by substituting the polynomial functions 
( )i tz  in the distance functions ijf  and comparing the 

coefficients of all powers of t  up to nt . This results in a 
series of systems of linear equations. So, checking a 
given framework whether it is rigid or higher-order 
flexible is reduced to inspect the solvability of these sys-
tems of linear equations step by step.  

The converse, i.e., finding the geometric meaning of 
these conditions, is not as straight forward as one might 
expect. The system for first order flexibility is homoge-
neous. Therefore the existence of a nontrivial first-order 
flex is equivalent to a sufficiently high rank-deficiency 
of the coefficient matrix, the socalled ridity matrix of F . 
The solution of the first system defines the absolute val-
ues in the inhomogeneous system for second-order flexi-
bility. If this system is solvable, its solution defines the 
absolute values for the third system, and so on. Instead 
of presenting details of this more or less technical 
method, we focus on the underlying geometric condi-
tions. 

It should be noted that a real-world model of such an 
infinitesimally flexible framework is really flexible be-
cause of the clearances at the vertices. The difference to 
a rigid framework is apparent as well as that to a con-
tinuously flexible framework since the flexes remain 
limited within a small neighborhood.  

There are several applications of infinitesimally 
flexible frameworks. In robotics, such poses are called 
singular and usually avoided since at least one degree of 
freedom is missing. When in surveying the relative posi-
tion of points is determined by measuring some of the 
mutual distances and when the corresponding framework 
is infinitesimally flexible, then this position is called 
critical as it results in numerical instability.  

III. EXAMPLES OF INFINITESIMALLY FLEXIBLE 

FRAMEWORKS 

A. First order flexibility 

The first derivative of ( , )ij i jf z z  at 0t =  vanishes if 

and only if 

,1 ,1( ) .( ) 0i j i j− − =x x x x  for all ( , )i j E∈ .           (1) 

This vanishing scalar product means that for each edge 

i jx x  of F  the components of the velocity vectors of ix  

and jx in direction of the edge i jx x  are equal. This is 

called Projection Theorem (Fig. 1). We summarize:  

Theorem 1: A framework F  is infinitesimally flexible if 

to each vertex ix  a velocity vector ,1ix  can be assigned 

such that for all edges of  F  the Projection Theorem (1) 
is fulfilled. 

The first example in Fig. 2 shows a planar bipartite 
framework. Bipartite means that the vertices can be di-
vided into two sets and each edge connects points from 
different sets. In our case there are six vertices ix  and 

jy , , {1,2,3}i j ∈ , and 9 edges i jx y . It has been  well-

known at least for one century that this framework is 
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infinitesimally flexible if and only if the vertices are 

placed on a curve of degree 2, i.e., either on a conic c  or 
on two lines. This is still true when more than 6 points 

ix  and jy  are chosen on the same conic. And it is also 

valid in higher dimensions when the conic is replaced by 

any quadric in IR d . The following short proof due to W. 
Whiteley [25] reveals that this condition is sufficient and 
that the velocity vectors can be chosen perpendicular to 
the quadric – as shown in Fig. 2 for the two-dimensional 
case. 

 
Figure 2.   A planar bipartite framework is infinitesimally flexible 

 if the vertices are located on a 2nd-order curve 

Proof: We write the coordinate vectors in columns and 
set up the equation of the quadric in matrix form by 

0T
=x Q x  with a symmetric d d× -matrix Q . Since ix  

and jy  are specified as points on the quadric, we have 

0T T
i i j j= =x Q x y Q y . Now we specify the velocity 

vectors by ,1i i=x Q x  and ,1j j= −y Q y , and we verify 

that for the edge i jx y  the Projection Theorem is full-

filled. For this purpose we write the scalar product in 
matrix form and obtain 

,1 ,1( ) ( ) ( ) ( )T T
i j i j i j i j− − = − +x y x y x y Q x Q y  

0T T T T
i i j i i j j j= − + − =x Q x y Q x x Q y y Q y  

since ix  and jy  obey the quadric equation and the real 

number T
j iy Q x  is the transpose of T

i jx Q y . On the 

other hand, ( ) 0T
i =x Q x  is the equation of the tangent 

plane of the quadric at point ix , and hence the vector 

,1i i=x Q x  is perpendicular to the quadric. The same 

holds for ,1jy  (Fig. 2).                                                    ♦ 

The assignment of velocity vectors to an infinitesimally 
flexible framework F  is not unique. Apart from a scal-
ing we can additionally impose an instantanous motion. 
This means we can add + is S x  to each ,1ix without dis-

turbing eq. (1) since ( ) ( )− −
T

i j i jx x S x x  is the null-

form when S  is skew-symmetric. 

 

Figure 3.  Another infinitesimally flexible framework with 
6 vertices and 9 edges 

The next example displayed in Fig. 3 is again a pla-
nar framework with 6 vertices and 9 edges, but not bi-
partite. It is a pinned framework, i.e., vertices indicated 
by the black-and-white points in Fig. 3 are fixed. This 
framework is infinitesimally flexible if and only if the 

three lines i ix y  have one point in common or are paral-

lel. 

In the last two examples the geometric characterizations 
are of projective nature. If we transform a conic by a 
collineation, the image is again a conic. The same holds 
for the condition in Fig. 3. This is surprising since rigid-
ity deals with lengths of edges, i.e., is based on a metri-
cal definition, and distances, angles and even parallelities 
change under collinear transformations. The following 
theorem has first been proved by H. Liebmann (1920) 
[13] (for an alternative proof and historical remarks see 
I. Izmestiev [11]). 

Theorem 2: If an infinitesimally flexible framework is 

transformed by a collinear transformation without map-

ping any vertex onto a point at infinity, then the obtained 

framework is still first-order flexible. 

Proof: We follow B. Wegner (1984) [24] and formulate 
the proof for a planar framework though the same idea 
can immediatly be used in higher dimensions. 

 
 

Figure 4.   Proof of the projective invariance of 
first-order flexibility by the principle of ‘coning’ 

Suppose, the framework F  with vertices 1{ ,..., }vx x  and 

edges i jx x  is located in the plane 0z = . Now we ex-

tend F  to a framework F ′  in 3IR  by adding an addi-
tional vertex 0x  outside of 0z =  and by including the 

v  edges 0 ix x . We call F ′  a conical framework as it 

actually consists of triangular plates 0 i jx x x . Now we 

prove that F ′  is flexible if and only if F  is flexible. This 
principle has been called ‘coning’ by W. Whiteley [26]. 
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Suppose, F  is flexible, i.e., there are velocity vectors 

,1ix  such that the Projection Theorem is fulfilled for 

each edge of F . Now we show that there are also veloc-
ity vectors ,1j′x  for all vertices 0{ ,..., }vx x  of F ′  such 

that they are compatible with all edge lengths of F ′ :  

We set 0,1′ =x 0 . And we specify ,1i′x  such that it is per-

pendicular to the edge 0 ix x  and its top view onto 0z =  

coincides with ,1ix  (see Fig. 4). We immediately see that 

for all edges 0 ix x  the Projection Theorem is fulfilled; 

the orthogonal projections of 0,1′x  and ,1i′x  onto this 

edge are zero. But also for the edges i jx x  of the original 

framework F  the Projection Theorem is fulfilled, as the 
orthgonal projections of ,1ix  and of ,1i′x  onto i jx x  are 

equal.  

Conversely, if the conical framework F ′  is infinitesi-
mally flexible with given velocity vectors, we apply an  
instantaneous translation by adding to all velocity vec-
tors the vector 0,1′−x  so that 0x  gets zero velocity like 

before. Then, by defining the top views of the other ve-
locity vectors as the velocity vectors at the vertices of the 
framework F  in the plane 0z = , we can immediately  
verify the infinitesimal flexibility of F .  

These arguments are true for each planar section of the 
conical framework – as long as the plane does not pass 
through 0x . Since any collinear transformation between 

planes can be obtained by intersecting a conical structure 
with different planes, we have thus proved Liebman’s 
theorem.                                                                            ♦                                  

B. Higher-order infinitesimal flexibility 

     Figure 5 characterizes 2nd-order flexible frameworks 
of the combinatorial type of Fig. 3. This reveals that this 
is no more projectively invariant as the congruence of 
angles wouldn’t be preserved under a proper collinea-
tion. In the last picture of Fig. 5 a continuously flexible 
framework of this type is displayed.  

 

 

Figure 5.  2nd-order flexible framework [16] 

Figure 6 shows that 3rd-order flexibility is given if 
and only if the points 2 3, ,1x x x  are specified on a certain 

cubic or conic. 

 

Figure 6.  3rd-order flexible framework [16] 

Figure 7 shows an example of a 2nd-order flexible bi-
partite planar framework. Due to A. C. Dixon [10] there 
are two types of continuously flexible planar bipartite 
frameworks (see Fig. 8). Even their spherical analoga are 
continuously flexible. 

  

 

Figure 7.  2nd-order flexible bipartite framework [17] 

 

 
Figure 8.  Due to Dixon there are two families of 
continuously flexible bipartite planar frameworks 

T. Tarnai presented in [23] an example of an infini-

tesimally flexible framework of order 2 1m
−  for arbi-

trary m . It is again a pinned framework. A similar struc-
ture can be found in a sketch of Leonardo da Vinci – as a 
device to multiply forces like a leverage or a tackle 
block. As the conditions for continuous flexibility are 
algebraic, it is understandable that due to V. Alexandrov 
[2] any framework which is infinitesimally flexible of 
sufficiently high order must be continuously flexible. In 
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the case of a planar bipartite framework 8th-order flexi-
bility must imply continuous flexibility. 

 

 

Figure 9.   T. Tarnai’s iterative example of an infinitesimally 
 flexible framework of high order 

C. First-order flexibility vs. snapping frameworks 

Infinitesimal flexibility can be seen as the limiting 
case where two realizations of a framework coincide. 
This was the way how W. Wunderlich studied 
infinitesimal flexibility. There is a direct connection 
between pairs of realizations of any framework and an 
infinitesimally flexible framework of the same 
combinatorial type. W. Whiteley [26] calls this 
‘averaging’; in I. Izmestiev [11] it is called Pogorelov 

map. W. Wunderlich [27] called such two sufficiently 
close realizations ‘snapping’ since a real-world model 
can  change from one realization into the other by 
applying slight force.   

Theorem 3:  Let 1,..., vy y  and 1,...,′ ′vy y  be the vertices 

of two incongruent realizations of a framework F ′  with 

the same metric. Then the midpoints 1 ( )
2i i i′= +x y y  of 

corresponding vertices make a framework F  of the 

same combinatorial structure which is infinitesimally 

flexible with velocity vectors ,1
1 ( )
2i i i′= −x y y . 

Conversely, any infinitesimally flexible framework F  
with vertices 1,..., vx x  and velocity vectors 1,1 ,1,..., vx x  

gives rise to two incongruent realizations of a 

framework F ′  of the same combinatorial type. Its 

vertices are ,1i i i= +y x x  and ,1i i i′ = −y x x , respec-

tively. 

Proof: The proof is unexpectedly short. The equation  
2 2( ) ( ) 0i j i j′ ′− − − =y y y y  is equivalent to  

( ).( ) 0i j i j i j i j′ ′ ′ ′− + − − − + =y y y y y y y y , and this is 

just the statement of the Projection Theorem (1) because 
of 2 i i i′= +x y y  and .12 i i i′= −x y y .                              ♦ 

 

 

Figure 10.   Snapping bipartite planar frameworks 
 

As an example, we focus again on the bipartite 
planar framework of Fig. 2. In [19] it is proved that any 
two incongruent realizations of a bipartite framework 
F  are related by Ivory’s theorem; the vertices are 
located on two confocal conics (Fig. 10). Hence, 
averaging between corresponding points of two 
congruent pairs of confocal conics gives vertices located 
on one conic. Conversely, in the notation of W. 
Whiteley’s proof above the points i i+x Qx  and 

j j−y Q y  as well as i i−x Qx  and j j+y Q y  are 

located on two pairs of confocal conics. In Fig. 2 these 
are two concentric circles (dashed lines) passing 
through the tips of the velocity vectors. 

When F  is rigid and the assignment of velocity 
vectors is trivial, i.e., ,1i i= +x s S x , then the corre-

sponding two ‘snapping’ realizations are congruent. 
This results from the fact that for skew-symmetric S  

the matrix product 1( ) ( )−
+ −d dI S I S  is orthogonal, 

provided dI  is the unit matrix and S  has eigenvalues 

1≠ ± . This is known as Cayley’s method to parametrize 
orthogonal matrices.   

 

IV. FLEXIBLE POLGYGONAL STRUCTURES 

We conclude with two types of polyhedra and start 
with octahedra, i.e., double-pyramids with a quadrangu-
lar basis 1 4,...,x x . This can be seen as a spatial bipartite 

framework since beside the sides of the quadrangle the 
edges connect vertices 1 4,...,x x  of the basis with the 

two apices 1y  and 2y . Hence, we can immediately 

apply our previous results on bipartite frameworks.  

 
 

Figure 11.   Infinitesimally flexible octahedron 

An octahedron is infinitesimally flexible if and only if 

the four sides of the quadrangle 1 4,...,x x  are located on 

a quadric which at the same time passes through the 

two apices 1y  and 2y  (see Fig. 11). There are 

equivalent characterizations, obtained by different 
authors. However, the characterization based on 
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quadrics can be generalized onto higher dimensions (see  
C. S. Borcea [6]). On the other hand, the snapping case, 
first studied by W. Wunderlich [27], is related to 
confocal quadrics. And this was the basis for reproving 
R. Bricard’s classical result that there are exactly 3 
families of continuously flexible octahedra in [15]. Also 
in the hyperbolic space the analogous cases are 
continuously flexible [20, 21]. It is an open problem 
whether these are the only ones. In a similar way it 
might be possible to prove that in the 4-space those 
presented in [18] are the only ones which are conti-
nuously flexible, and that there are no continuously 
flexible cross-polytopes in a space of dimension > 4. 

Another family of polyhedral structures where the 
question of flexibility found interest, is that of Kokot-
sakis meshes, i.e., in the standard case the compounds of 
3 3×  quadrangles. The 1st-order infinitesimal flexibility 
has already been characterized by A. Kokotsakis [12] 
himself. Up to now 5 families of continuously flexible 
versions are known [22], and it is still open whether this 
list is complete. 

 

Figure 12.   Miura-ori, a flexible polygonal structure; snapshots of 
the folding procedure 

A famous example of a flexible polygonal structure 
which is composed from particular Kokotsakis meshes is 
Miura-ori, a folding technique originating from Japan 
(see Fig. 12). It should be noted that also Bricard’s flexi-
ble octahedra are particular Kokotsakis meshes of gen-
eral type. 
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