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Abstract  This paper treats flexible polyhedra in the hyperbolic 3-space HE. Tt is
proved that the geometric characterization of octahedra being infinites-
imally flexible of orders 1 or 2 is quite the same as in the Euclidean
case. Also Euclidean results concerning continuously flexible octahedra
remain valid in hyperbolic geometry: There are at least three types
of continuously flexible octahedra in H?; the line-symmetric Type 1,
Type 2 with planar symmetry, and the non-symmetric Type 3 with two
flat positions. However, Type 3 can be subdivided into three subclasses
according to the type of circles in hyperbolic geometry. The flexibility of
Type 3 octahedra can again be argued with the aid of Ivory’s Theorem.
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Introduction

R. Bricard’s continuously flexible octahedra ([1], compare also [9, 5])
play an essential role in the theory of flexible polyhedra. The first
two types of flexible octahedra in the Euclidean 3-space E° admit self-
symmetries: All pairs of opposite vertices of Type 1 are symmetric with
respect to a line; at Type 2 two pairs of vertices are symmetric with
respect to a plane which passes through the remaining two vertices. Oc-
tahedra of Type & are unsymmetric and admit two flat positions which in
a certain way are related to three concentric circles (see e.g. [7]). Bricard
proved in [1] that these three types are the only octahedra in E?* which
are continuously flexible — apart from two trivial cases which either
have one equator aligned or two opposite vertices coinciding.

Beside the continuously flexible exemplars also the infinitesimally flez-
ible octahedra deserve interest. They can be classified with respect to
the order n > 1 of flexibility. In [6] geometric characterizations were
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given for octahedra which are flexible either of first or of second order
(compare also [2, 9]).

The aim of this paper is to demonstrate that these characterizations
remain valid in the hyperbolic space H®> (Theorem 1). Furthermore, it
will be proved (Theorem 3) that the hyperbolic counterparts of Bricard’s
octahedra are again continuously flexible.

The flexibility of Types 1 and 2 in H? can be proved like in E3: Let a
skew isogram BiC|B3Cs be given, i.e., a quadrangle with the property
that opposite sides have equal length. Then each pair (Bj, By) and
(C1,Cs) is symmetric with respect to an axis a.! Any arbitrary point
Ay can serve as a vertex for a pyramid with basis B1C;ByCy. This
pyramid consisting of four triangles is flexible in H?. And this flexibility
is not restricted when we add its mirror under reflection in the axis a. Of
course, at each Bricard’s octahedron we have to neglect self-intersections.

When a quadrangle B1C} BsCY is given where two pairs of neighboring
sides are of equal length, e.g.. dy(B1,C;) = dp (B3, C;), i = 1,2, then the
vertices By, By are symmetric with respect to a plane through € and
Cs. In a similar way as before two symmetric pyramids with the common
basis B1C1ByCy constitute a flexible octahedron which is of Type 2.

The description of octahedra of Type 3 (with flat positions) is more
complicated and will be given in Section 2 below.

It is conjectured that these three types are the only nontrivial exam-
ples of flexible octahedra in H?. However, a complete proof is still open.
For the Euclidean case Bricard’s main result in [1] has been reproved
in [5] with methods from projective geometry. The proof was based on
a configuration theorem concerning bipartite frameworks (see [8]). The
hyperbolic counterpart of this theorem has not yet been proved.

Most of the following statements are based on the projective model of
H? with the absolute quadric . We use a coordinate system in the real
projective 3-space P? such that for any two points X = xR, Y = yR
conjugate position with respect to €2 is equivalent to

(x,y) = zoyo — z1y1 — T2y2 — z3y3 = 0. (1)

Then for points® x, y € H? the coordinates can be normalized to ( x, x) =
(y,y) =1, and their hyperbolic distance dj,(x,y) obeys

coshdp(x,y) = (x,y), provided (x,x)=(y,y)=1 (2)

I The triangles B; BoC1 and By B1 C5 are congruent. Therefore there is a product of reflections
in two perpendicular planes with By + Ba, C1 — Ca, and vice versa.

2In the sequel we often identify the point X with any of its coordinate vectors x when we
briefly speak about ‘point’ x.
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This is the so-called Weierstrafl model of H?. Tt is located on the unit
sphere of the four-dimensional Minkowski space M.

1. Infinitesimally flexible octahedra in H3

Theorem 1 Let O be an octahedron in H? with the non-coplanar ‘equa-
tor’ B1C1B2Cy and the ‘poles’ Ay # As.

1. O is infinitesimally flexible of first order if and only if there is a
second-order surface ®1 passing through the vertices Ay, Ay and
through the sides of the equator B1C1ByCs.

2. A first-order infinitesimally flexible octahedron O with surface ®4
according to 1. is infinitesimally flexible of order two if and only
if there are second-order surfaces ®o4through the poles Ay, Ao and
Dopthrough the sides of the equator B1Cy BaCo such that the pencil
spanned by ®o, and Pop includes the surface Vo which is polar to
the absolut quadric Q with respect to ®.

Proof. In analogy to the Euclidean definition (cf. [3, 4]) a framework

F with vertices vi,...,v, and edges e;y = v; v, (i,7) € E, is called
infinitesimally flezible of order n (in the classical sense) in H® if and only
if for each i € {1,...,n} there is a polynomial function

V; = Vi—i—Vi’lt—i-...—l-Vi’ntn, n>1, (3)
such that

(a) the replacement of v; by vi € R[t]? in the formulas for the edge
lengths gives stationary values of multiplicity > n at ¢t = 0, i.e.,

due to (2)
(V5 V) — (Vi vi) = olt") V(i.k) € E, "
while (v}, vi) —1=o0(t") Vie{l,...,n}.
(b) In order to exclude trivial flexes, the vectors vy y,..., vy do not

originate from any motion of F as a rigid body.

The n-tupel (v},...,v)) of polynomial vector functions is called a non-
trivial n-th-order flex of F.

Conditions for n-th order flexibility of @.  The 12 edges of the
octahedron O define a framework in H? with 6 vertices aj,...,cy. We
change the notation of the equator slightly by setting

vi:=by, vo:=c¢q, v3:=Dbg, vy :=co.
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Now in analogy to [6] we subdivide the edge set of O into the equator
{viva,...,v4vi} and the 8 sides v;ay, j € {1,...,4}, k € {1,2}. The
latter form a bipartite sub-framework O’ of O.

Let an n-th-order flex of O be given by

V; =vjt+viit+...+ Vj’ntn, a;c =aptag t+...+ ak,nt" (5)

such that

(Vi ap) — (v, ax) =

(vi. vi) —(vj, vj) =

("), (Vi Vi) — (v, vit1) = o(t?), (6)
("), (ay. ap) — (ak, ag) = o(t")

for all j € {1,...,4} and k£ € {1,2}. From now on we assume a non-
coplanar equator vy ...vy. Then at each ¢ € R there is a linear mapping

I(t): RY = R, v, vi(t) for j=1,...,4.
For each k € {1,2} the equations

(1(vj), ay) = (vj, a) = o(t")

define a system of four linearly independent equations for the unknown
vector ag. Let the mapping [* be adjoint to [, i.e., obeying (l(x), y) =
(x, I*(y)) for each ¢ € R. Then the solution of the linear system can be
expressed as

ar = [*(a)) +o(t") for k=1,2.

Thus the first equation of (6) holds true for all edges of O'. For ¢
sufficiently near to 0 the linear mapping [ is bijective as well as [*. Here
we introduce two bilinear forms over R[¢],

fltxy) = (1(x), l(y)) — (x, ), (7)
g(tix,y) = (x, y) — (" H(x), " H(y)).

Thus we can summarize the remaining conditions in (6) for an n-th order
infinitesimal flex as

fvjvi) =o(t"),  f(vj Vi) = o(t"), glag,a) = o(t"). (8)

These are homogeneous in v; and ay.
Now we turn over to matrix notation. We write the coordinate vectors
as columns and set up

I(t): vj = vi=A(t)v; with A(0) = I, 9)

where I; denotes the 4x4 unit matrix. The entries of A are polynomials
of degree < n. Let H denote the diagonal matrix diag(l,—1,—1,—1)



Flexible Octahedra in the Hyperbolic Space )

with H=! = H" = H. Then the fundamental bilinear form (1) can be
expressed as

and the mapping adjoint to [ reads
I*(t): a}, — a, = HAT Ha), . (10)
Therefore the coordinatizations of the bilinear forms defined in (7) are

f(ta x,y) = XT(ATHA - H)ya

11
g(t:x,y) :=x"(H — HA’IHAT_lH)y. (1

Lemma 1 The octahedron O with non-coplanar equator vy ...v4 is in-
finitesimally flexible of order n if and only if in a neighborhood of t =0
there is a reqular matriz A(t) with entries of class C™ and A(0) = I4 such
that the vertices vi,...,as obey the equations (8) with bilinear forms f, g
according to (11) — provided the flex corresponding to v;(t) = Av; and

ai(t) = HAT ™' Hay, is not trivial.
In order to obtain geometric characterizations for n-order flexible oc-

tahedra, n € {1,2,...}, we compare the coefficients of ¢ in the equations
(8). For this purpose we use the Taylor expansions (compare [7])

Alt) = Li+Ait+ A2 ..., (12)
Ail(t) = I4 — Alt + (—AQ + A%)tQ + ...,
This implies for the bilinear forms (11)
ATHA—H = (ATH + HA\)t + (ATH + ATHA, + HA))#? + ...,
H-HA'HAT'H = (ATH+ HA))t +
+(ATH — AT°H — HA\HATH — HA? + HA)#2 + ... .
We set )
f(ta x,y) fl(xay)t + fQ(Xa Y)t + 3 (13)
g(t;x,y) = g1(x,¥)t + ga(x, y)t* +
and obtain
fl (Xa Y) =01 (Xa Y) = XT(HAI + A{H)ya (14)
fo(x.y) = x"(ATH + AT HA, + HAs)y, (15)

go(x,y) = xT(ATH — AT*H — HA\HATH — HA? + HA,)y.
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First-order flexibility. = Suppose, the bilinear form f; in (14) is not
zero. Then fi(x,x) = 0 is the equation of a second-order surface ®;.
Due to
filvi,vi) = fi(vi, vig1) = fi(ag, ap) =0
this surface @, passes through the equator and through the poles.
According to Lemma 1 and (12) the ‘velocity vectors’ under this flex
in the Minkowski space M* are

Vi1 = Alvi, a1 = —HA{Hak.
The velocity vector x of point x under any hyperbolic motion obeys
x = Bx with B" = ~-HBH.

B := —H; + HATH is an example for such a ‘pseudo-skew-symmetric’
matrix. We superimpose this instantaneous motion and obtain the new
velocity vectors

Vil = %(Al + HA?H)VZ, ay 1 = —%(Al + HA?H)ak (16)

In analogy to the Euclidean case these vectors in M* are perpendicular
in the Minkowski sense to the surface ®;. This follows from the fact that
the plane tangent to ®; at x obeys the equation (HA; + AT H)x = 0.
The vector (A; + HAT H)x is perpendicular to this tangent plane.

Since vy, ..., vy are supposed to be linearly independent, the velocity
vectors of our flex are trivial if and only if the matrix (A; + HAT H)
is pseudo-skew-symmetric. But then this must be the zero-matrix, and
the bilinear form f; in (14) would be zero, too. Hence the existence of
a second-order surface ®; guarantees that the flex is non-trivial.

Second-order flexibility. The second order terms in the bilinear
forms f(#;x,y), g(t;x,y) are listed in (15). Their difference

h2(xa Y) = f2(x,y) - 92(Xa Y) =
xT(ATHA, + AT°H + HA\HATH + HA?)y = (17)
x"(ATH + HA\)H(HA, + ATH)y

depends on the first order terms only. The points of the second-order
surface Wy: ho(x,x) = 0 have polar planes with respect to ®; which are
tangent to the absolute quadric €2. This means for regular ®; that W,
is polar to €2 with respect to ;.

Due to (8), for a 2nd-order flexible octahedron O there is a surface
Dy, fo(x,x) = 0 passing through the equator. The second surface
Dy, : go(x,x) = 0 passes through the poles a; and as. And in addition,
®y, and P9y span a pencil which includes Ws. O
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2. Flexible octahedra of Type 3 in H?

Any Bricard octahedron O of Type 3 in E? admits flat positions which
can be determined in the following way (see Fig. 1):

Figure 1.  The flat position of Type 3, proper case

Let kac, kap be two different circles with the common center M, and
let Ay, As be two different points outside kac and kap. The tangent
lines of k4p passing through A; or As define a quadrilateral. We specify
(B1, By) as a pair of opposite vertices.> Then A, B; A3 By is a quadrangle
with the four sides A1 By, ..., Bo Ay tangent to kap. In the same way we
specify a second quadrangle A;Cy A9Cy tangent to the circle k4. Then
(A1, As), (By,Bs) and (C1,C5) are the pairs of opposite vertices of O
in a flat position. We restrict to proper octahedra by the assumption
that points Bi,...,Cy are finite. And we exclude self-symmetries by
requiring that A;, Ay are not aligned with M and the distances A1 M
and Ao M are different.

This definition can immediately be used in the hyperbolic plane H?,
too. However, the demand for finite points By, ..., s is of course much
more restrictive. And we have to distinguish whether the concentric
circles kac, kap are proper circles, hypercircles or horocircles in H?.
This means that in the projective model which is used here the center
M can be located in the interior, in the exterior or on the absolute conic

u of HE.

3When kap happens to be tangent to the line A; Ay then the pair (B, B2) is unique; one
B-point is the point of contact.



We prove in several steps that in H? an octahedron O with such a flat
position is continuously flexible. Due to the projective model of H? we
can frequently follow the arguments given in [7] for the Euclidean case.

2.1 Properties of the flat positions

The pairs of line pencils with carriers (A1, As), (B1, Bg) and (C1, Cy)
span a two-parametric linear system S of second-class curves.

Any two different curves of this system span a one-parameter linear
system (‘range’) which is completely included in S. Therefore S contains
the circles k4p and k4c and the spanned range, i.e., all circles centered
at M, the multiplicity-two pencil with carrier M, and the absolute conic
u, if seen as the set of isotropic lines.

Any two different ranges from S share one curve. This implies that
also the quadrangle B, C; Bs(C is tangent to a circle kg centered at M.
Hence at O no pair of opposite vertices can be distinguished among the
others.

Furthermore, with any conic ¢ € S all conics confocal? to ¢ are in-
cluded in §. And this range shares a curve ¢ with the range spanned
by the pair of pencils with carriers (Cy, Cs) and the twofold pencil M.
We therefore conclude for any position of M

By

Figure 2.  Illustration to Lemma 2

4Two conics in H2 are confocal if and only if these tangential conics span a linear system
which contains the absolute conic u.



Flexible Octahedra in the Hyperbolic Space 9

Lemma 2 For any conic ¢ tangent to the sides of A1ByAyBy there is
a confocal conic ¢ which passes simultanously through Cy and Co such
that the tangent lines at Cy and Cy intersect in M (Fig. 2).

2.2 Particular case of Ivory’s Theorem in H3

Let ® be a ruled quadric in H? with a plane o of symmetry. The prin-
cipal section ®' N ¢ is denoted by ¢’. Then the following Lemma 3 is a
hyperbolic counterpart of Ivory’s Theorem in E?. The affine transforma-
tion between ‘corresponding points’ of confocal surfaces in the Euclidean
case is now replaced by a selfadjoint linear mapping [ in the Weierstraf
model or by a collinear transformation in the projective model of H?.

Lemma 3 For any ruled quadric ® in H? with a plane o of symmetry
and a real focal curve® ¢ C o there is a selfadjoint linear mapping
I: R* = R* with the following properties:

a) Points x' € @' are mapped on points x := I(x') € o obeying
(x, x) = (x', X'). Therefore absolute points of ® remain on .

b) The restriction of | to ¢ := ® N o is a bijection onto the focal
curve ¢ which must be located in the exterior of . Conversely, for
any pair (¢, c) of confocal curves in H? with c in the exterior of '
there is a ruled surface ®' through ' with ¢ as focal conic.

¢) The restriction of | to any generator of ®' is an isometry onto a
tangent line of c.

d) For anyx',y' € ® we obtain equal hyperbolic distances dy(1(x"),y")
dn(x', 1(y')).-

Proof. Letl:R* — R* x' — x = I(x') be selfadjoint with respect
to the bilinear form ( , ) in (1), i.e., I = I* with (I(x'), y) = (X', I*(y)).
There is a quadric ® obeying

g(x',x') = (x', x') = (I(x), I(x)) = 0. (18)
The points x’ € ®' are characterized by the property

(x', x) = (I(x'), I(x)) = (x, x).

5Two second-order surfaces ®, ®' in H? are confocal if and only if their dual surfaces span a
linear system which includes the absolute surface 2 — seen as the set of absolute planes. If
the dual of ® is singular, i.e., consisting of the tangential planes of a conic ¢, then ¢ is called
a focal conic of @',
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Figure 3.  Proving the flexibility of Type 3 with Ivory’s Theorem

Therefore according to (2) for any two points x',y’ € ® we have a
statement of Ivory type

dh(l(xl)v y) = dh(x’v l*(y))'

In addition, the distance between two points x',y’ € ® is preserved if
and only if

a(x,y') = (%', y') = (I(x), Iy")) = 0.
This characterizes conjugate position of x',y’ with respect to @', i.e.,
the connecting line x'y’ is a generator of ®'.

Suppose the selfadjoint [ has rank 3 with I[(R*) = 0. Let s denote the
absolute pole of 0. Then we have

0= (s, I(x)) = (I(s), x')

for all x’ € R*. This impliesi(s) = o, i.e., the fibres of [ are perpendicular
to o.
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o needs to be a plane of symmetry for ® since for all y' € o we have
(y', s) = 0 and therefore according to (18)

q(y'ss) := (¥, s) = (U(y"), I(s)) = 0.

This means, s is the pole of ¢ also with respect to ®'. The restriction
of [ to the plane o is bijective and transfers ¢ = ® N o onto a conic c.
All points of &\ ¢ are mapped into the exterior of ¢ since the images
of the generators of ® are lines which meet c in exactly one point, i.e.,
tangent lines.

We prove by contradiction that ¢’ must be located in the interior of c:
Suppose there is a point x’ € ¢’ which coincides with the image y of any
y' € &'\ ¢/. Then Ivory’s Theorem would give 0 = dp,(x",y) = di(x,y’)
with x € ¢ C o and y’ distant from o, and this is a contradiction.

We continue the proof of Lemma 3 by showing that for each ruled
quadric ®' there is a selfadjoint mapping [ of rank 3 such that the equa-
tion of @' is of the form (18). And we show that @' is confocal to its
image under [. For this purpose we turn over to matrix notation:

Without restriction of generality we suppose that o obeys the equation
23 = 0. Then we can set up the selfadjoint mapping as

ago apr ap2 O

I ¥ 5 x = AX' with A4 = | —@01 a1 612 0 (19)
—ap2 aiz azp 0
0 0 00

since AT = HAH. Hence equation (18) gets the form
o' q(x',x) = x'T(H —ATHA)X = x'TH(I4 — AHx' =0. (20)
The symmetric coordinate matrix
Q:=H—-ATHA

of the quadratic form ¢(x’,x’) is supposed to be regular, and from (20)
we obtain

A2 =1, - HQ. (21)

Points x’ of any plane with coordinate vector u’ = A”'u have their image
x = I(x') in the plane u”x = 0. The mapping u — ATu is adjoint to
[ with respect to the standard scalar product. Under this mapping all
planes obeying the quadratic form

d: u"AH - ATHA)'ATu=0 (22)
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are transferred into planes tangent to ®'. So, (22) is the dual represen-
tation of the image [(®'), while u'" (H — ATHA) 'u’ = 0 is the dual
equation of @',

Now we state

H+AH - ATHA)'AT = (H - ATHA)™". (23)

This reveals that [(®') and the dual of the absolute quadric Q with
coordinate matrix H span a range which includes @', i.e., ®' and I(®’)
are confocal — whether [ has rank 4 or 3.
For proving eq. (23) we multiply both sides with (H — AT HA) and

obtain

I, —HATHA+ A(H — ATHA) 'AT(H - ATHA) = I,
and this is an identity because of HA” = AH and

AT(H - ATHA) = ATH — ATATHA = (H — ATHA)A.

It remains to prove that each hyperboloid ® in H? with o as a plane
of symmetry has an equation of type (20). This is equivalent to the
existence of a matrix A, which is of type (19) and obeys (21).

There are three types of ruled quadrics @ to distinguish: The princi-
pal section ¢ = ®' N ¢ has

(I) a center of symmetry,
(IT) no center, but an axis of symmetry,

(ITI) neither a center, nor an axis of symmetry.

Ad (T): In this case we can set up the equation of ® as

/A 12 12 12 12
q(x',x') = yo0ry” + y112] + Y2z — 23" = 0.

This is a ruled quadric with points in the interior of the absolute 2 and
with a real focal conic ¢ in o if either

Yoo <0, Y11,722 >0, Y00 +7v11 >0 or 7o+ y11 >0,

or
0<v0<1l, —-1<71<0, 7v2>0, v0o+~vy1>0.

In both cases there is a matrix A obeying (21), namely

A% = diag(1 — vo0, 1+ v11, 14 722, 0).
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We get the solutions

A = diag(+/1 —y00, £v/1+ 711, £/1+ 722, 0),

and the corresponding focal curve ¢ obeys

Y00 2 Y11 2 Y22 9
Ty + Ty + x
T—v0 © T4y ' T4y °

r3 =0 and

Ad (IT): Without restriction of generality we can set up

2 2 2
q(x’,Xl) = ’yllxll + 2’)/01$6£E11 + 722%’2 — $’3 =0

with
Yo1 7é 07 7%1 S 47817 Y22 > 0.
According to (21) there is a matrix A obeying

I =y 0 0
42— | o T+ 0 0
0 0 147 0
0 0 0 0

since the upper-left 2x2-matrix has either conjugate complex eigenvalues
or a twofold eigenvalue with a one-dimensional eigenspace. We obtain

(=0 +711)/2Vd Yo1/Vd 0 0

A= —Y01/Vo —(0+v11)/2V6 0 0
0 0 V1479 0

0 0 0 0

for 6 := 2+ 11 + 24/1 4+ 7% + 711. The focal curve ¢ € o obeys
(22 + 1) [¥6125 — 2ymmom1 — (71 + m11)77] — y2(1 + 45y +y1)a3 = 0.
Ad (ITT): We can set up

2 2 2 2
q(x',x") = y00(2g” — 21" — 257) + 2902 (g — w7) 2 — w3 =0

with
Y00 <0, 702 # 0.

There is a matrix A obeying

1 =0 0 —v2 0

L 0 I—v0 —v2 O
Y02 —Yo2  1—20 O

0 0 0 0
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since the upper-left 3 x 3-matrix has a positive triple eigenvalue with a
one-dimensional eigenspace. The solution is

862 + ’}/32 —’)’32 —4v990 0

A= 1 s 80% — gy —4y026 0
Wi 4920 — 4020 862 0

0 0 0 0

for 0 := 1 — vgp; the focal curve ¢ € o obeys

Y006° (aF — @1 — x3) — Yo2(x0 — x1) [Y02(w0 — 21) — 202 = 0.
The last remark of Lemma 3,b can be verified by comparing the equa-
tions of ¢ with that of ®' in the cases (I)—(III). O

2.3 Conclusions for Octahedra in H?

Now we combine the previous statements: We identify o with the
projective model of the hyperbolic plane H? where the flat position of O
is located. We see each conic ¢’ of Lemma 2 (Fig. 2) as principal section
of a one-sheet hyperboloid ®' and ¢ as its focal curve (see Fig. 3).

Then Lemma 3,c reveals that there is a quadrangle A} B A5BY, with
sides on @' which is mapped by [ onto A; B;A;Bs while all side-lengths
are preserved.® Under [ the vertices C;,Cy € ¢ are mapped onto

1,C% € c (notation reversed!), and Ivory’s Theorem in Lemma 3.d
implies d(A;, Cj) = dp(A}, C}) and dp(B;, Cj) = dp(Bj, C}) (see Fig. 3).
Hence the spatial octahedron A ...} is isometric to the flat position
A1 - 02 .

For completing the proof of the continuous flexibility of O two items
remain to be checked:

(i) ¢ needs to be inside the focal curve ¢, to say, no tangent line of ¢
may intersect ¢/, and

(ii) ¢ and ¢’ must be of the same type with respect to u, i.e., both
intersect u in the same way.

It is substantial that due to the properties of the linear system S
there is a conic ¢ tangent to Ay By AsBs and passing through both line
elements (C;, MC;), i = 1,2. So we can use continuity arguments:

Ad (i): Let ¢ denote the side Ay By. While the 2nd-class curve ¢’ with
line elements (C;, M C;) varies, the pole T of ¢ with respect to ¢’ traces

6The quadrangle A} B} A, B, € ® is unique up to the reflection in the plane o.
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a line t. For ¢’ = ¢y we obtain the point T of contact between ¢ and
cg- We get T'= M when ¢ degenerates into the pencil with carrier M.
And S = t'NC Oy is the pole of ¢ with respect to the pair of line pencils
(Cy,Cy). Conversely, any point T of line Ty M defines a unique curve ¢’
of this contact range.

Now it depends on the choice of direction when starting from cq: If T'
moves along ¢’ torwards the interior of ¢g, i.e., if the pair (T, M) separates
(Tp, S), then the corresponding conic ¢’ will not intersect ¢. This results
from properties of the polarity with respect to ¢’ and the involution of
conjugate points on t'. So ¢’ meets the necessary condition; it is included
in the interior of the confocal ¢, which according to Lemma 2 is tangent
to t.

Ad (ii): When starting from ¢y, the types of ¢ and ¢ with respect
to the absolute conic u can only begin to differ at a position where
c or ¢ contacts u. Since ¢ and ¢ are confocal, this contact with u
happens for both conics simultaneously at the same point U. So, it
could only happen that — from this contact at U on — one conic has
real points of intersection near U, the other has no intersection. But
this is a contradiction with Lemma 3,a,b, which states that there is
a bijection ¢/ — ¢ mapping absolute points again on absolute points,
provided ¢’ is in the interior of c.

All octahedra of Type 3 admit a second flat position. This results
from the concentric circles kap, kac, kpc in the given flat position (see
Fig. 1) for the following reason:

At each of the six vertices, e.g. at A;, the connecting lines with the
other pairs (B, By) and (Cy, Cy) are symmetric with respect to the line
through M: Suppose we keep the face A1 BC fixed. Then for the second
flat position it is necessary that each vertex Ay, By, Cy of the opposite
face is obtained by reflecting the single points Ay, By and C5 in the sides
B1Cy, A1Cy and A; By, respectively (see Fig. 4). In order to guarantee
that the distances do not change, we must e.g. demonstrate that there is
one isometry in H? which maps simultaneously By — By and Cy — Cs.
The first can be carried out by the consecutive reflections in the lines
A1Bs and A;C}. For the latter we use the reflections in A;Cy and A Bj.
Now it results from the Three-Reflection-Theorem of absolute geometry
that these products of reflections are equal because of the symmetry
with respect to line A; M.

It turns out that in the sense of Fig. 3 this second flat position is
reached when ¢’ degenerates into the pair of line pencils (C7, Cy). The
corresponding hyperboloid ® degenerates into a focal conic of cg.

Thus we end up with
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Figure 4. The two flat positions A1 B;C1AsB2Ca and A; B1C1AyB>Ca of O

Theorem 2 All three classes of Type 3 octahedra in H® are continuously
flexible and they admit a second flat position.

Theorem 3 There are at least three types of continuously flexible oc-
tahedra in H3. At Type 1 all pairs of opposite vertices are symmetric
with respect to a line, at Type 2 two pairs of vertices are symmetric with
respect to a plane which passes through the remaining two vertices. Flex-

ible octahedra of Type 3 are unsymmetric with flat positions according
to Fig. 1.
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