
FLEXIBLE OCTAHEDRA IN THEHYPERBOLIC SPACEHellmuth StahelInstitute of Geometry, Vienna University of Tehnologystahel�geometrie.tuwien.a.atAbstrat This paper treats exible polyhedra in the hyperboli 3-spae H 3 . It isproved that the geometri haraterization of otahedra being in�nites-imally exible of orders 1 or 2 is quite the same as in the Eulideanase. Also Eulidean results onerning ontinuously exible otahedraremain valid in hyperboli geometry: There are at least three typesof ontinuously exible otahedra in H 3 ; the line-symmetri Type 1,Type 2 with planar symmetry, and the non-symmetri Type 3 with twoat positions. However, Type 3 an be subdivided into three sublassesaording to the type of irles in hyperboli geometry. The exibility ofType 3 otahedra an again be argued with the aid of Ivory's Theorem.Keywords: Flexible polyhedra, Briard's otahedra, in�nitesimal exibility, hyper-boli geometryIntrodutionR. Briard's ontinuously exible otahedra ([1℄, ompare also [9, 5℄)play an essential role in the theory of exible polyhedra. The �rsttwo types of exible otahedra in the Eulidean 3-spae E3 admit self-symmetries: All pairs of opposite verties of Type 1 are symmetri withrespet to a line; at Type 2 two pairs of verties are symmetri withrespet to a plane whih passes through the remaining two verties. O-tahedra of Type 3 are unsymmetri and admit two at positions whih ina ertain way are related to three onentri irles (see e.g. [7℄). Briardproved in [1℄ that these three types are the only otahedra in E 3 whihare ontinuously exible | apart from two trivial ases whih eitherhave one equator aligned or two opposite verties oiniding.Beside the ontinuously exible exemplars also the in�nitesimally ex-ible otahedra deserve interest. They an be lassi�ed with respet tothe order n � 1 of exibility. In [6℄ geometri haraterizations were1



2given for otahedra whih are exible either of �rst or of seond order(ompare also [2, 9℄).The aim of this paper is to demonstrate that these haraterizationsremain valid in the hyperboli spae H 3 (Theorem 1). Furthermore, itwill be proved (Theorem 3) that the hyperboli ounterparts of Briard'sotahedra are again ontinuously exible.The exibility of Types 1 and 2 in H 3 an be proved like in E 3 : Let askew isogram B1C1B2C2 be given, i.e., a quadrangle with the propertythat opposite sides have equal length. Then eah pair (B1; B2) and(C1; C2) is symmetri with respet to an axis a.1 Any arbitrary pointA1 an serve as a vertex for a pyramid with basis B1C1B2C2. Thispyramid onsisting of four triangles is exible in H 3 . And this exibilityis not restrited when we add its mirror under reetion in the axis a. Ofourse, at eah Briard's otahedron we have to neglet self-intersetions.When a quadrangle B1C1B2C2 is given where two pairs of neighboringsides are of equal length, e.g., dh(B1; Ci) = dh(B2; Ci), i = 1; 2, then theverties B1; B2 are symmetri with respet to a plane through C1 andC2. In a similar way as before two symmetri pyramids with the ommonbasis B1C1B2C2 onstitute a exible otahedron whih is of Type 2.The desription of otahedra of Type 3 (with at positions) is moreompliated and will be given in Setion 2 below.It is onjetured that these three types are the only nontrivial exam-ples of exible otahedra in H 3 . However, a omplete proof is still open.For the Eulidean ase Briard's main result in [1℄ has been reprovedin [5℄ with methods from projetive geometry. The proof was based ona on�guration theorem onerning bipartite frameworks (see [8℄). Thehyperboli ounterpart of this theorem has not yet been proved.Most of the following statements are based on the projetive model ofH 3 with the absolute quadri 
. We use a oordinate system in the realprojetive 3-spae P3 suh that for any two points X = xR, Y = yRonjugate position with respet to 
 is equivalent tohx; yi := x0y0 � x1y1 � x2y2 � x3y3 = 0: (1)Then for points2 x;y 2 H 3 the oordinates an be normalized to hx; xi =hy; yi = 1, and their hyperboli distane dh(x;y) obeysosh dh(x;y) = hx; yi; provided hx; xi = hy; yi = 1: (2)1The triangles B1B2C1 and B2B1C2 are ongruent. Therefore there is a produt of reetionsin two perpendiular planes with B1 7! B2, C1 7! C2, and vie versa.2In the sequel we often identify the point X with any of its oordinate vetors x when webriey speak about `point' x.



Flexible Otahedra in the Hyperboli Spae 3This is the so-alled Weierstra� model of H 3 . It is loated on the unitsphere of the four-dimensional Minkowski spae M 4 .1. In�nitesimally exible otahedra in H 3Theorem 1 Let O be an otahedron in H 3 with the non-oplanar `equa-tor' B1C1B2C2 and the `poles' A1 6= A2.1. O is in�nitesimally exible of �rst order if and only if there is aseond-order surfae �1 passing through the verties A1; A2 andthrough the sides of the equator B1C1B2C2.2. A �rst-order in�nitesimally exible otahedron O with surfae �1aording to 1. is in�nitesimally exible of order two if and onlyif there are seond-order surfaes �2athrough the poles A1; A2 and�2bthrough the sides of the equator B1C1B2C2 suh that the penilspanned by �2a and �2b inludes the surfae 	2 whih is polar tothe absolut quadri 
 with respet to �1.Proof. In analogy to the Eulidean de�nition (f. [3, 4℄) a frameworkF with verties v1; : : : ;vn and edges ejk = vj vk, (i; j) 2 E, is alledin�nitesimally exible of order n (in the lassial sense) in H 3 if and onlyif for eah i 2 f1; : : : ; ng there is a polynomial funtionv0i := vi + vi;1t+ : : : + vi;ntn; n � 1; (3)suh that(a) the replaement of vi by v0i 2 R[t℄4 in the formulas for the edgelengths gives stationary values of multipliity � n at t = 0, i.e.,due to (2) hv0j ; v0ki � hvj ; vki = o(tn) 8(j; k) 2 E;while hv0i; v0ii � 1 = o(tn) 8i 2 f1; : : : ; ng: (4)(b) In order to exlude trivial exes, the vetors v1;1; : : : ;vn;1 do notoriginate from any motion of F as a rigid body.The n-tupel (v01; : : : ;v0n) of polynomial vetor funtions is alled a non-trivial n-th-order ex of F .Conditions for n-th order exibility of O. The 12 edges of theotahedron O de�ne a framework in H 3 with 6 verties a1; : : : ; 2. Wehange the notation of the equator slightly by settingv1 := b1; v2 := 1; v3 := b2; v4 := 2 :



4Now in analogy to [6℄ we subdivide the edge set of O into the equatorfv1v2; : : : ;v4v1g and the 8 sides vjak, j 2 f1; : : : ; 4g, k 2 f1; 2g. Thelatter form a bipartite sub-framework O0 of O.Let an n-th-order ex of O be given byv0j = vj + vj;1t+ : : :+ vj;ntn; a0k = ak + ak;1t+ : : :+ ak;ntn (5)suh thathv0j ; a0ki � hvj ; aki = o(tn); hv0j ; v0j+1i � hvj ; vj+1i = o(tn);hv0j ; v0ji � hvj ; vji = o(tn); ha0k; a0ki � hak; aki = o(tn) (6)for all j 2 f1; : : : ; 4g and k 2 f1; 2g. From now on we assume a non-oplanar equator v1 : : : v4. Then at eah t 2 R there is a linear mappingl(t) : R4 ! R4 ; vj 7! v0j(t) for j = 1; : : : ; 4:For eah k 2 f1; 2g the equationsh l(vj); a0ki � hvj ; aki = o(tn)de�ne a system of four linearly independent equations for the unknownvetor ak. Let the mapping l? be adjoint to l, i.e., obeying h l(x); yi =hx; l?(y)i for eah t 2 R. Then the solution of the linear system an beexpressed as ak = l?(a0k) + o(tn) for k = 1; 2:Thus the �rst equation of (6) holds true for all edges of O0. For tsuÆiently near to 0 the linear mapping l is bijetive as well as l?. Herewe introdue two bilinear forms over R[t℄,f(t;x;y) := h l(x); l(y)i � hx; yi;g(t;x;y) := hx; yi � h l?�1(x); l?�1(y)i: (7)Thus we an summarize the remaining onditions in (6) for an n-th orderin�nitesimal ex asf(vj;vj) = o(tn); f(vj;vj+1) = o(tn); g(ak;ak) = o(tn): (8)These are homogeneous in vj and ak.Now we turn over to matrix notation. We write the oordinate vetorsas olumns and set upl(t) : vj 7! v0j = A(t)vi with A(0) = I4 ; (9)where I4 denotes the 4�4 unit matrix. The entries of A are polynomialsof degree � n . Let H denote the diagonal matrix diag(1;�1;�1;�1)



Flexible Otahedra in the Hyperboli Spae 5with H�1 = HT = H. Then the fundamental bilinear form (1) an beexpressed as hx; yi = xTHy;and the mapping adjoint to l readsl?(t) : a0k 7! ak = HATHa0k : (10)Therefore the oordinatizations of the bilinear forms de�ned in (7) aref(t;x;y) := xT (ATHA�H)y;g(t;x;y) := xT (H �HA�1HAT�1H)y: (11)Lemma 1 The otahedron O with non-oplanar equator v1 : : :v4 is in-�nitesimally exible of order n if and only if in a neighborhood of t = 0there is a regular matrix A(t) with entries of lass Cn and A(0) = I4 suhthat the verties v1; : : : ;a2 obey the equations (8) with bilinear forms f; gaording to (11) | provided the ex orresponding to v0j(t) = Avj anda0k(t) = HAT�1Hak is not trivial.In order to obtain geometri haraterizations for n-order exible o-tahedra, n 2 f1; 2; : : :g, we ompare the oeÆients of tn in the equations(8). For this purpose we use the Taylor expansions (ompare [7℄)A(t) = I4 +A1t+A2 t2 + : : : ;A�1(t) = I4 �A1t+ (�A2 +A21)t2 + : : : : (12)This implies for the bilinear forms (11)ATHA�H = (AT1H +HA1)t+ (AT2H +AT1HA1 +HA2)t2 + : : : ;H �HA�1HAT�1H = (AT1H +HA1)t ++(AT2H �AT1 2H �HA1HAT1H �HA21 +HA2)t2 + : : : :We set f(t;x;y) = f1(x;y)t + f2(x;y)t2 + : : : ;g(t;x;y) = g1(x;y)t + g2(x;y)t2 + : : : (13)and obtain f1(x;y) = g1(x;y) = xT (HA1 +AT1H)y; (14)f2(x;y) = xT (AT2H +AT1HA1 +HA2)y;g2(x;y) = xT (AT2H �AT1 2H �HA1HAT1H �HA21 +HA2)y: (15)



6First-order exibility. Suppose, the bilinear form f1 in (14) is notzero. Then f1(x;x) = 0 is the equation of a seond-order surfae �1.Due to f1(vi;vi) = f1(vi;vi+1) = f1(ak;ak) = 0this surfae �1 passes through the equator and through the poles.Aording to Lemma 1 and (12) the `veloity vetors' under this exin the Minkowski spae M 4 arevi;1 = A1vi; ak;1 = �HAT1Hak:The veloity vetor _x of point x under any hyperboli motion obeys_x = Bx with BT = �HBH:B := �H1 +HAT1H is an example for suh a `pseudo-skew-symmetri'matrix. We superimpose this instantaneous motion and obtain the newveloity vetorsvi;1 = 12(A1 +HAT1H)vi; ak;1 = �12(A1 +HAT1H)ak: (16)In analogy to the Eulidean ase these vetors in M 4 are perpendiularin the Minkowski sense to the surfae �1. This follows from the fat thatthe plane tangent to �1 at x obeys the equation (HA1 + AT1H)x = 0.The vetor (A1 +HAT1H)x is perpendiular to this tangent plane.Sine v1; : : : ;v4 are supposed to be linearly independent, the veloityvetors of our ex are trivial if and only if the matrix (A1 + HAT1H)is pseudo-skew-symmetri. But then this must be the zero-matrix, andthe bilinear form f1 in (14) would be zero, too. Hene the existene ofa seond-order surfae �1 guarantees that the ex is non-trivial.Seond-order exibility. The seond order terms in the bilinearforms f(t;x;y), g(t;x;y) are listed in (15). Their di�ereneh2(x;y) := f2(x;y) � g2(x;y) == xT (AT1HA1 +AT1 2H +HA1HAT1H +HA21)y == xT (AT1H +HA1)H(HA1 +AT1H)y (17)depends on the �rst order terms only. The points of the seond-ordersurfae 	2 : h2(x;x) = 0 have polar planes with respet to �1 whih aretangent to the absolute quadri 
. This means for regular �1 that 	2is polar to 
 with respet to �1.Due to (8), for a 2nd-order exible otahedron O there is a surfae�2b : f2(x;x) = 0 passing through the equator. The seond surfae�2a : g2(x;x) = 0 passes through the poles a1 and a2. And in addition,�2a and �2b span a penil whih inludes 	2.



Flexible Otahedra in the Hyperboli Spae 72. Flexible otahedra of Type 3 in H 3Any Briard otahedron O of Type 3 in E 3 admits at positions whihan be determined in the following way (see Fig. 1):
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Figure 1. The at position of Type 3, proper aseLet kAC , kAB be two di�erent irles with the ommon enter M , andlet A1; A2 be two di�erent points outside kAC and kAB . The tangentlines of kAB passing through A1 or A2 de�ne a quadrilateral. We speify(B1; B2) as a pair of opposite verties.3 Then A1B1A2B2 is a quadranglewith the four sides A1B1, . . . , B2A1 tangent to kAB . In the same way wespeify a seond quadrangle A1C1A2C2 tangent to the irle kAC . Then(A1; A2), (B1; B2) and (C1; C2) are the pairs of opposite verties of Oin a at position. We restrit to proper otahedra by the assumptionthat points B1; : : : ; C2 are �nite. And we exlude self-symmetries byrequiring that A1; A2 are not aligned with M and the distanes A1Mand A2M are di�erent.This de�nition an immediately be used in the hyperboli plane H 2 ,too. However, the demand for �nite points B1; : : : ; C2 is of ourse muhmore restritive. And we have to distinguish whether the onentriirles kAC , kAB are proper irles, hyperirles or horoirles in H 2 .This means that in the projetive model whih is used here the enterM an be loated in the interior, in the exterior or on the absolute oniu of H 2 .3When kAB happens to be tangent to the line A1A2 then the pair (B1; B2) is unique; oneB-point is the point of ontat.



8 We prove in several steps that in H 3 an otahedron O with suh a atposition is ontinuously exible. Due to the projetive model of H 3 wean frequently follow the arguments given in [7℄ for the Eulidean ase.2.1 Properties of the at positionsThe pairs of line penils with arriers (A1; A2), (B1; B2) and (C1; C2)span a two-parametri linear system S of seond-lass urves.Any two di�erent urves of this system span a one-parameter linearsystem (`range') whih is ompletely inluded in S. Therefore S ontainsthe irles kAB and kAC and the spanned range, i.e., all irles enteredat M , the multipliity-two penil with arrierM , and the absolute oniu, if seen as the set of isotropi lines.Any two di�erent ranges from S share one urve. This implies thatalso the quadrangle B1C1B2C2 is tangent to a irle kBC entered at M .Hene at O no pair of opposite verties an be distinguished among theothers.Furthermore, with any oni  2 S all onis onfoal4 to  are in-luded in S. And this range shares a urve 0 with the range spannedby the pair of penils with arriers (C1; C2) and the twofold penil M .We therefore onlude for any position of MPSfrag replaements M
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Figure 2. Illustration to Lemma 24Two onis in H2 are onfoal if and only if these tangential onis span a linear systemwhih ontains the absolute oni u.



Flexible Otahedra in the Hyperboli Spae 9Lemma 2 For any oni  tangent to the sides of A1B1A2B2 there isa onfoal oni 0 whih passes simultanously through C1 and C2 suhthat the tangent lines at C1 and C2 interset in M (Fig. 2).2.2 Partiular ase of Ivory's Theorem in H 3Let �0 be a ruled quadri in H 3 with a plane � of symmetry. The prin-ipal setion �0 \ � is denoted by 0. Then the following Lemma 3 is ahyperboli ounterpart of Ivory's Theorem in E3 . The aÆne transforma-tion between `orresponding points' of onfoal surfaes in the Eulideanase is now replaed by a selfadjoint linear mapping l in the Weierstra�model or by a ollinear transformation in the projetive model of H 3 .Lemma 3 For any ruled quadri �0 in H 3 with a plane � of symmetryand a real foal urve 5  � � there is a selfadjoint linear mappingl : R4 ! R4 with the following properties:a) Points x0 2 �0 are mapped on points x := l(x0) 2 � obeyinghx; xi = hx0; x0i. Therefore absolute points of �0 remain on 
.b) The restrition of l to 0 := �0 \ � is a bijetion onto the foalurve  whih must be loated in the exterior of 0. Conversely, forany pair (0; ) of onfoal urves in H 2 with  in the exterior of 0there is a ruled surfae �0 through 0 with  as foal oni.) The restrition of l to any generator of �0 is an isometry onto atangent line of .d) For any x0;y0 2 �0 we obtain equal hyperboli distanes dh(l(x0);y0) =dh(x0; l(y0)).Proof. Let l : R4 ! R4 , x0 7! x = l(x0) be selfadjoint with respetto the bilinear form h ; i in (1), i.e., l = l? with h l(x0); yi = hx0; l?(y)i.There is a quadri �0 obeyingq(x0;x0) := hx0; x0i � h l(x0); l(x0)i = 0: (18)The points x0 2 �0 are haraterized by the propertyhx0; x0i = h l(x0); l(x0)i = hx; xi:5Two seond-order surfaes �;�0 in H3 are onfoal if and only if their dual surfaes span alinear system whih inludes the absolute surfae 
 | seen as the set of absolute planes. Ifthe dual of � is singular, i.e., onsisting of the tangential planes of a oni , then  is alleda foal oni of �0.
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Figure 3. Proving the exibility of Type 3 with Ivory's TheoremTherefore aording to (2) for any two points x0;y0 2 �0 we have astatement of Ivory typedh(l(x0);y) = dh(x0; l?(y)):In addition, the distane between two points x0;y0 2 �0 is preserved ifand only if q(x0;y0) = hx0; y0i � h l(x0); l(y0)i = 0:This haraterizes onjugate position of x0;y0 with respet to �0, i.e.,the onneting line x0y0 is a generator of �0.Suppose the selfadjoint l has rank 3 with l(R4 ) = �. Let s denote theabsolute pole of �. Then we have0 = h s; l(x0)i = h l(s); x0ifor all x0 2 R4 . This implies l(s) = o, i.e., the �bres of l are perpendiularto �.



Flexible Otahedra in the Hyperboli Spae 11� needs to be a plane of symmetry for �0 sine for all y0 2 � we havehy0; si = 0 and therefore aording to (18)q(y0; s) := hy0; si � h l(y0); l(s)i = 0:This means, s is the pole of � also with respet to �0. The restritionof l to the plane � is bijetive and transfers 0 = �0 \ � onto a oni .All points of �0 n 0 are mapped into the exterior of  sine the imagesof the generators of �0 are lines whih meet  in exatly one point, i.e.,tangent lines.We prove by ontradition that 0 must be loated in the interior of  :Suppose there is a point x0 2 0 whih oinides with the image y of anyy0 2 �0 n 0. Then Ivory's Theorem would give 0 = dh(x0;y) = dh(x;y0)with x 2  � � and y0 distant from �, and this is a ontradition.We ontinue the proof of Lemma 3 by showing that for eah ruledquadri �0 there is a selfadjoint mapping l of rank 3 suh that the equa-tion of �0 is of the form (18). And we show that �0 is onfoal to itsimage under l. For this purpose we turn over to matrix notation:Without restrition of generality we suppose that � obeys the equationx3 = 0. Then we an set up the selfadjoint mapping asl : x0 7! x = Ax0 with A = 0BB� a00 a01 a02 0�a01 a11 a12 0�a02 a12 a22 00 0 0 0 1CCA (19)sine AT = HAH. Hene equation (18) gets the form�0 : q(x0;x0) = x0T (H �ATHA)x0 = x0TH(I4 �A2)x0 = 0: (20)The symmetri oordinate matrixQ := H �ATHAof the quadrati form q(x0;x0) is supposed to be regular, and from (20)we obtain A2 = I4 �HQ: (21)Points x0 of any plane with oordinate vetor u0 = ATu have their imagex = l(x0) in the plane uTx = 0. The mapping u 7! ATu is adjoint tol with respet to the standard salar produt. Under this mapping allplanes obeying the quadrati form�: uTA(H �ATHA)�1ATu = 0 (22)



12are transferred into planes tangent to �0. So, (22) is the dual represen-tation of the image l(�0), while u0T (H � ATHA)�1u0 = 0 is the dualequation of �0.Now we stateH +A(H �ATHA)�1AT = (H �ATHA)�1: (23)This reveals that l(�0) and the dual of the absolute quadri 
 withoordinate matrix H span a range whih inludes �0, i.e., �0 and l(�0)are onfoal | whether l has rank 4 or 3.For proving eq. (23) we multiply both sides with (H � ATHA) andobtain I4 �HATHA+A(H �ATHA)�1AT (H �ATHA) = I4;and this is an identity beause of HAT = AH andAT (H �ATHA) = ATH �ATATHA = (H �ATHA)A:It remains to prove that eah hyperboloid �0 in H 3 with � as a planeof symmetry has an equation of type (20). This is equivalent to theexistene of a matrix A, whih is of type (19) and obeys (21).There are three types of ruled quadris �0 to distinguish: The prini-pal setion 0 = �0 \ � has(I) a enter of symmetry,(II) no enter, but an axis of symmetry,(III) neither a enter, nor an axis of symmetry.Ad (I): In this ase we an set up the equation of �0 asq(x0;x0) = 00x002 + 11x012 + 22x022 � x032 = 0:This is a ruled quadri with points in the interior of the absolute 
 andwith a real foal oni  in � if either00 < 0; 11; 22 > 0; 00 + 11 > 0 or 00 + 11 > 0;or 0 < 00 < 1; �1 < 11 < 0; 22 > 0; 00 + 11 > 0:In both ases there is a matrix A obeying (21), namelyA2 = diag(1� 00; 1 + 11; 1 + 22; 0):



Flexible Otahedra in the Hyperboli Spae 13We get the solutionsA = diag(�p1� 00; �p1 + 11; �p1 + 22; 0);and the orresponding foal urve  obeysx3 = 0 and 001� 00 x20 + 111 + 11 x21 + 221 + 22 x20 = 0:Ad (II): Without restrition of generality we an set upq(x0;x0) = 11x012 + 201x00x01 + 22x022 � x032 = 0with 01 6= 0; 211 � 4201; 22 > 0:Aording to (21) there is a matrix A obeyingA2 = 0BB� 1 �01 0 001 1 + 11 0 00 0 1 + 22 00 0 0 0 1CCAsine the upper-left 2�2-matrix has either onjugate omplex eigenvaluesor a twofold eigenvalue with a one-dimensional eigenspae. We obtainA = 0BB� (�Æ + 11)=2pÆ 01=pÆ 0 0�01=pÆ �(Æ + 11)=2pÆ 0 00 0 p1 + 22 00 0 0 0 1CCAfor Æ := 2 + 11 + 2p1 + 201 + 11. The foal urve  2 � obeys(22 + 1) �201x20 � 201x0x1 � (201 + 11)x21�� 22(1 + 201 + 11)x22 = 0:Ad (III): We an set upq(x0;x0) = 00(x002 � x012 � x022) + 202(x00 � x01)x02 � x032 = 0with 00 < 0; 02 6= 0:There is a matrix A obeyingA2 = 0BB� 1� 00 0 �02 00 1� 00 �02 002 �02 1� 00 00 0 0 0 1CCA



14sine the upper-left 3�3-matrix has a positive triple eigenvalue with aone-dimensional eigenspae. The solution isA = 18pÆ3 0BB� 8Æ2 + 202 �202 �402Æ 0202 8Æ2 � 202 �402Æ 0402Æ �402Æ 8Æ2 00 0 0 0 1CCAfor Æ := 1� 00; the foal urve  2 � obeys00Æ2(x20 � x21 � x22)� 02(x0 � x1) [02(x0 � x1)� 2Æx2℄ = 0:The last remark of Lemma 3,b an be veri�ed by omparing the equa-tions of  with that of �0 in the ases (I){(III).2.3 Conlusions for Otahedra in H 3Now we ombine the previous statements: We identify � with theprojetive model of the hyperboli plane H 2 where the at position of Ois loated. We see eah oni 0 of Lemma 2 (Fig. 2) as prinipal setionof a one-sheet hyperboloid �0 and  as its foal urve (see Fig. 3).Then Lemma 3, reveals that there is a quadrangle A01B01A02B02 withsides on �0 whih is mapped by l onto A1B1A2B2 while all side-lengthsare preserved.6 Under l the verties C1; C2 2 0 are mapped ontoC 01; C 02 2  (notation reversed!), and Ivory's Theorem in Lemma 3,dimplies dh(Ai; Cj) = dh(A0i; C 0j) and dh(Bi; Cj) = dh(B0i; C 0j) (see Fig. 3).Hene the spatial otahedron A01 : : : C 02 is isometri to the at positionA1 : : : C2 .For ompleting the proof of the ontinuous exibility of O two itemsremain to be heked:(i) 0 needs to be inside the foal urve , to say, no tangent line of may interset 0, and(ii)  and 0 must be of the same type with respet to u, i.e., bothinterset u in the same way.It is substantial that due to the properties of the linear system Sthere is a oni 0 tangent to A1B1A2B2 and passing through both lineelements (Ci;MCi), i = 1; 2. So we an use ontinuity arguments:Ad (i): Let t denote the side A1B1. While the 2nd-lass urve 0 withline elements (Ci;MCi) varies, the pole T of t with respet to 0 traes6The quadrangle A01B01A02B02 2 � is unique up to the reetion in the plane �.



Flexible Otahedra in the Hyperboli Spae 15a line t0. For 0 = 0 we obtain the point T0 of ontat between t and0. We get T = M when  degenerates into the penil with arrier M .And S = t0\C1C2 is the pole of t with respet to the pair of line penils(C1; C2). Conversely, any point T of line T0M de�nes a unique urve 0of this ontat range.Now it depends on the hoie of diretion when starting from 0: If Tmoves along t0 torwards the interior of 0, i.e., if the pair (T;M) separates(T0; S), then the orresponding oni 0 will not interset t. This resultsfrom properties of the polarity with respet to 0 and the involution ofonjugate points on t0. So 0 meets the neessary ondition; it is inludedin the interior of the onfoal , whih aording to Lemma 2 is tangentto t.Ad (ii): When starting from 0, the types of  and 0 with respetto the absolute oni u an only begin to di�er at a position where or 0 ontats u. Sine  and 0 are onfoal, this ontat with uhappens for both onis simultaneously at the same point U . So, itould only happen that | from this ontat at U on | one oni hasreal points of intersetion near U , the other has no intersetion. Butthis is a ontradition with Lemma 3,a,b, whih states that there isa bijetion 0 !  mapping absolute points again on absolute points,provided 0 is in the interior of .All otahedra of Type 3 admit a seond at position. This resultsfrom the onentri irles kAB ; kAC ; kBC in the given at position (seeFig. 1) for the following reason:At eah of the six verties, e.g. at Ai, the onneting lines with theother pairs (B1; B2) and (C1; C2) are symmetri with respet to the linethroughM : Suppose we keep the fae A1B1C1 �xed. Then for the seondat position it is neessary that eah vertex A2; B2; C2 of the oppositefae is obtained by reeting the single points A2, B2 and C2 in the sidesB1C1, A1C1 and A1B1, respetively (see Fig. 4). In order to guaranteethat the distanes do not hange, we must e.g. demonstrate that there isone isometry in H 2 whih maps simultaneously B2 7! B2 and C2 7! C2.The �rst an be arried out by the onseutive reetions in the linesA1B2 and A1C1. For the latter we use the reetions in A1C2 and A1B1.Now it results from the Three-Reetion-Theorem of absolute geometrythat these produts of reetions are equal beause of the symmetrywith respet to line A1M .It turns out that in the sense of Fig. 3 this seond at position isreahed when 0 degenerates into the pair of line penils (C1; C2). Theorresponding hyperboloid � degenerates into a foal oni of 0.Thus we end up with
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