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helInstitute of Geometry, Vienna University of Te
hnologysta
hel�geometrie.tuwien.a
.atAbstra
t This paper treats 
exible polyhedra in the hyperboli
 3-spa
e H 3 . It isproved that the geometri
 
hara
terization of o
tahedra being in�nites-imally 
exible of orders 1 or 2 is quite the same as in the Eu
lidean
ase. Also Eu
lidean results 
on
erning 
ontinuously 
exible o
tahedraremain valid in hyperboli
 geometry: There are at least three typesof 
ontinuously 
exible o
tahedra in H 3 ; the line-symmetri
 Type 1,Type 2 with planar symmetry, and the non-symmetri
 Type 3 with two
at positions. However, Type 3 
an be subdivided into three sub
lassesa

ording to the type of 
ir
les in hyperboli
 geometry. The 
exibility ofType 3 o
tahedra 
an again be argued with the aid of Ivory's Theorem.Keywords: Flexible polyhedra, Bri
ard's o
tahedra, in�nitesimal 
exibility, hyper-boli
 geometryIntrodu
tionR. Bri
ard's 
ontinuously 
exible o
tahedra ([1℄, 
ompare also [9, 5℄)play an essential role in the theory of 
exible polyhedra. The �rsttwo types of 
exible o
tahedra in the Eu
lidean 3-spa
e E3 admit self-symmetries: All pairs of opposite verti
es of Type 1 are symmetri
 withrespe
t to a line; at Type 2 two pairs of verti
es are symmetri
 withrespe
t to a plane whi
h passes through the remaining two verti
es. O
-tahedra of Type 3 are unsymmetri
 and admit two 
at positions whi
h ina 
ertain way are related to three 
on
entri
 
ir
les (see e.g. [7℄). Bri
ardproved in [1℄ that these three types are the only o
tahedra in E 3 whi
hare 
ontinuously 
exible | apart from two trivial 
ases whi
h eitherhave one equator aligned or two opposite verti
es 
oin
iding.Beside the 
ontinuously 
exible exemplars also the in�nitesimally 
ex-ible o
tahedra deserve interest. They 
an be 
lassi�ed with respe
t tothe order n � 1 of 
exibility. In [6℄ geometri
 
hara
terizations were1



2given for o
tahedra whi
h are 
exible either of �rst or of se
ond order(
ompare also [2, 9℄).The aim of this paper is to demonstrate that these 
hara
terizationsremain valid in the hyperboli
 spa
e H 3 (Theorem 1). Furthermore, itwill be proved (Theorem 3) that the hyperboli
 
ounterparts of Bri
ard'so
tahedra are again 
ontinuously 
exible.The 
exibility of Types 1 and 2 in H 3 
an be proved like in E 3 : Let askew isogram B1C1B2C2 be given, i.e., a quadrangle with the propertythat opposite sides have equal length. Then ea
h pair (B1; B2) and(C1; C2) is symmetri
 with respe
t to an axis a.1 Any arbitrary pointA1 
an serve as a vertex for a pyramid with basis B1C1B2C2. Thispyramid 
onsisting of four triangles is 
exible in H 3 . And this 
exibilityis not restri
ted when we add its mirror under re
e
tion in the axis a. Of
ourse, at ea
h Bri
ard's o
tahedron we have to negle
t self-interse
tions.When a quadrangle B1C1B2C2 is given where two pairs of neighboringsides are of equal length, e.g., dh(B1; Ci) = dh(B2; Ci), i = 1; 2, then theverti
es B1; B2 are symmetri
 with respe
t to a plane through C1 andC2. In a similar way as before two symmetri
 pyramids with the 
ommonbasis B1C1B2C2 
onstitute a 
exible o
tahedron whi
h is of Type 2.The des
ription of o
tahedra of Type 3 (with 
at positions) is more
ompli
ated and will be given in Se
tion 2 below.It is 
onje
tured that these three types are the only nontrivial exam-ples of 
exible o
tahedra in H 3 . However, a 
omplete proof is still open.For the Eu
lidean 
ase Bri
ard's main result in [1℄ has been reprovedin [5℄ with methods from proje
tive geometry. The proof was based ona 
on�guration theorem 
on
erning bipartite frameworks (see [8℄). Thehyperboli
 
ounterpart of this theorem has not yet been proved.Most of the following statements are based on the proje
tive model ofH 3 with the absolute quadri
 
. We use a 
oordinate system in the realproje
tive 3-spa
e P3 su
h that for any two points X = xR, Y = yR
onjugate position with respe
t to 
 is equivalent tohx; yi := x0y0 � x1y1 � x2y2 � x3y3 = 0: (1)Then for points2 x;y 2 H 3 the 
oordinates 
an be normalized to hx; xi =hy; yi = 1, and their hyperboli
 distan
e dh(x;y) obeys
osh dh(x;y) = hx; yi; provided hx; xi = hy; yi = 1: (2)1The triangles B1B2C1 and B2B1C2 are 
ongruent. Therefore there is a produ
t of re
e
tionsin two perpendi
ular planes with B1 7! B2, C1 7! C2, and vi
e versa.2In the sequel we often identify the point X with any of its 
oordinate ve
tors x when webrie
y speak about `point' x.



Flexible O
tahedra in the Hyperboli
 Spa
e 3This is the so-
alled Weierstra� model of H 3 . It is lo
ated on the unitsphere of the four-dimensional Minkowski spa
e M 4 .1. In�nitesimally 
exible o
tahedra in H 3Theorem 1 Let O be an o
tahedron in H 3 with the non-
oplanar `equa-tor' B1C1B2C2 and the `poles' A1 6= A2.1. O is in�nitesimally 
exible of �rst order if and only if there is ase
ond-order surfa
e �1 passing through the verti
es A1; A2 andthrough the sides of the equator B1C1B2C2.2. A �rst-order in�nitesimally 
exible o
tahedron O with surfa
e �1a

ording to 1. is in�nitesimally 
exible of order two if and onlyif there are se
ond-order surfa
es �2athrough the poles A1; A2 and�2bthrough the sides of the equator B1C1B2C2 su
h that the pen
ilspanned by �2a and �2b in
ludes the surfa
e 	2 whi
h is polar tothe absolut quadri
 
 with respe
t to �1.Proof. In analogy to the Eu
lidean de�nition (
f. [3, 4℄) a frameworkF with verti
es v1; : : : ;vn and edges ejk = vj vk, (i; j) 2 E, is 
alledin�nitesimally 
exible of order n (in the 
lassi
al sense) in H 3 if and onlyif for ea
h i 2 f1; : : : ; ng there is a polynomial fun
tionv0i := vi + vi;1t+ : : : + vi;ntn; n � 1; (3)su
h that(a) the repla
ement of vi by v0i 2 R[t℄4 in the formulas for the edgelengths gives stationary values of multipli
ity � n at t = 0, i.e.,due to (2) hv0j ; v0ki � hvj ; vki = o(tn) 8(j; k) 2 E;while hv0i; v0ii � 1 = o(tn) 8i 2 f1; : : : ; ng: (4)(b) In order to ex
lude trivial 
exes, the ve
tors v1;1; : : : ;vn;1 do notoriginate from any motion of F as a rigid body.The n-tupel (v01; : : : ;v0n) of polynomial ve
tor fun
tions is 
alled a non-trivial n-th-order 
ex of F .Conditions for n-th order 
exibility of O. The 12 edges of theo
tahedron O de�ne a framework in H 3 with 6 verti
es a1; : : : ; 
2. We
hange the notation of the equator slightly by settingv1 := b1; v2 := 
1; v3 := b2; v4 := 
2 :



4Now in analogy to [6℄ we subdivide the edge set of O into the equatorfv1v2; : : : ;v4v1g and the 8 sides vjak, j 2 f1; : : : ; 4g, k 2 f1; 2g. Thelatter form a bipartite sub-framework O0 of O.Let an n-th-order 
ex of O be given byv0j = vj + vj;1t+ : : :+ vj;ntn; a0k = ak + ak;1t+ : : :+ ak;ntn (5)su
h thathv0j ; a0ki � hvj ; aki = o(tn); hv0j ; v0j+1i � hvj ; vj+1i = o(tn);hv0j ; v0ji � hvj ; vji = o(tn); ha0k; a0ki � hak; aki = o(tn) (6)for all j 2 f1; : : : ; 4g and k 2 f1; 2g. From now on we assume a non-
oplanar equator v1 : : : v4. Then at ea
h t 2 R there is a linear mappingl(t) : R4 ! R4 ; vj 7! v0j(t) for j = 1; : : : ; 4:For ea
h k 2 f1; 2g the equationsh l(vj); a0ki � hvj ; aki = o(tn)de�ne a system of four linearly independent equations for the unknownve
tor ak. Let the mapping l? be adjoint to l, i.e., obeying h l(x); yi =hx; l?(y)i for ea
h t 2 R. Then the solution of the linear system 
an beexpressed as ak = l?(a0k) + o(tn) for k = 1; 2:Thus the �rst equation of (6) holds true for all edges of O0. For tsuÆ
iently near to 0 the linear mapping l is bije
tive as well as l?. Herewe introdu
e two bilinear forms over R[t℄,f(t;x;y) := h l(x); l(y)i � hx; yi;g(t;x;y) := hx; yi � h l?�1(x); l?�1(y)i: (7)Thus we 
an summarize the remaining 
onditions in (6) for an n-th orderin�nitesimal 
ex asf(vj;vj) = o(tn); f(vj;vj+1) = o(tn); g(ak;ak) = o(tn): (8)These are homogeneous in vj and ak.Now we turn over to matrix notation. We write the 
oordinate ve
torsas 
olumns and set upl(t) : vj 7! v0j = A(t)vi with A(0) = I4 ; (9)where I4 denotes the 4�4 unit matrix. The entries of A are polynomialsof degree � n . Let H denote the diagonal matrix diag(1;�1;�1;�1)



Flexible O
tahedra in the Hyperboli
 Spa
e 5with H�1 = HT = H. Then the fundamental bilinear form (1) 
an beexpressed as hx; yi = xTHy;and the mapping adjoint to l readsl?(t) : a0k 7! ak = HATHa0k : (10)Therefore the 
oordinatizations of the bilinear forms de�ned in (7) aref(t;x;y) := xT (ATHA�H)y;g(t;x;y) := xT (H �HA�1HAT�1H)y: (11)Lemma 1 The o
tahedron O with non-
oplanar equator v1 : : :v4 is in-�nitesimally 
exible of order n if and only if in a neighborhood of t = 0there is a regular matrix A(t) with entries of 
lass Cn and A(0) = I4 su
hthat the verti
es v1; : : : ;a2 obey the equations (8) with bilinear forms f; ga

ording to (11) | provided the 
ex 
orresponding to v0j(t) = Avj anda0k(t) = HAT�1Hak is not trivial.In order to obtain geometri
 
hara
terizations for n-order 
exible o
-tahedra, n 2 f1; 2; : : :g, we 
ompare the 
oeÆ
ients of tn in the equations(8). For this purpose we use the Taylor expansions (
ompare [7℄)A(t) = I4 +A1t+A2 t2 + : : : ;A�1(t) = I4 �A1t+ (�A2 +A21)t2 + : : : : (12)This implies for the bilinear forms (11)ATHA�H = (AT1H +HA1)t+ (AT2H +AT1HA1 +HA2)t2 + : : : ;H �HA�1HAT�1H = (AT1H +HA1)t ++(AT2H �AT1 2H �HA1HAT1H �HA21 +HA2)t2 + : : : :We set f(t;x;y) = f1(x;y)t + f2(x;y)t2 + : : : ;g(t;x;y) = g1(x;y)t + g2(x;y)t2 + : : : (13)and obtain f1(x;y) = g1(x;y) = xT (HA1 +AT1H)y; (14)f2(x;y) = xT (AT2H +AT1HA1 +HA2)y;g2(x;y) = xT (AT2H �AT1 2H �HA1HAT1H �HA21 +HA2)y: (15)



6First-order 
exibility. Suppose, the bilinear form f1 in (14) is notzero. Then f1(x;x) = 0 is the equation of a se
ond-order surfa
e �1.Due to f1(vi;vi) = f1(vi;vi+1) = f1(ak;ak) = 0this surfa
e �1 passes through the equator and through the poles.A

ording to Lemma 1 and (12) the `velo
ity ve
tors' under this 
exin the Minkowski spa
e M 4 arevi;1 = A1vi; ak;1 = �HAT1Hak:The velo
ity ve
tor _x of point x under any hyperboli
 motion obeys_x = Bx with BT = �HBH:B := �H1 +HAT1H is an example for su
h a `pseudo-skew-symmetri
'matrix. We superimpose this instantaneous motion and obtain the newvelo
ity ve
torsvi;1 = 12(A1 +HAT1H)vi; ak;1 = �12(A1 +HAT1H)ak: (16)In analogy to the Eu
lidean 
ase these ve
tors in M 4 are perpendi
ularin the Minkowski sense to the surfa
e �1. This follows from the fa
t thatthe plane tangent to �1 at x obeys the equation (HA1 + AT1H)x = 0.The ve
tor (A1 +HAT1H)x is perpendi
ular to this tangent plane.Sin
e v1; : : : ;v4 are supposed to be linearly independent, the velo
ityve
tors of our 
ex are trivial if and only if the matrix (A1 + HAT1H)is pseudo-skew-symmetri
. But then this must be the zero-matrix, andthe bilinear form f1 in (14) would be zero, too. Hen
e the existen
e ofa se
ond-order surfa
e �1 guarantees that the 
ex is non-trivial.Se
ond-order 
exibility. The se
ond order terms in the bilinearforms f(t;x;y), g(t;x;y) are listed in (15). Their di�eren
eh2(x;y) := f2(x;y) � g2(x;y) == xT (AT1HA1 +AT1 2H +HA1HAT1H +HA21)y == xT (AT1H +HA1)H(HA1 +AT1H)y (17)depends on the �rst order terms only. The points of the se
ond-ordersurfa
e 	2 : h2(x;x) = 0 have polar planes with respe
t to �1 whi
h aretangent to the absolute quadri
 
. This means for regular �1 that 	2is polar to 
 with respe
t to �1.Due to (8), for a 2nd-order 
exible o
tahedron O there is a surfa
e�2b : f2(x;x) = 0 passing through the equator. The se
ond surfa
e�2a : g2(x;x) = 0 passes through the poles a1 and a2. And in addition,�2a and �2b span a pen
il whi
h in
ludes 	2.



Flexible O
tahedra in the Hyperboli
 Spa
e 72. Flexible o
tahedra of Type 3 in H 3Any Bri
ard o
tahedron O of Type 3 in E 3 admits 
at positions whi
h
an be determined in the following way (see Fig. 1):
PSfrag repla
ements M

A2
A1

B1

B2
C2C1 kAB

kAC
Figure 1. The 
at position of Type 3, proper 
aseLet kAC , kAB be two di�erent 
ir
les with the 
ommon 
enter M , andlet A1; A2 be two di�erent points outside kAC and kAB . The tangentlines of kAB passing through A1 or A2 de�ne a quadrilateral. We spe
ify(B1; B2) as a pair of opposite verti
es.3 Then A1B1A2B2 is a quadranglewith the four sides A1B1, . . . , B2A1 tangent to kAB . In the same way wespe
ify a se
ond quadrangle A1C1A2C2 tangent to the 
ir
le kAC . Then(A1; A2), (B1; B2) and (C1; C2) are the pairs of opposite verti
es of Oin a 
at position. We restri
t to proper o
tahedra by the assumptionthat points B1; : : : ; C2 are �nite. And we ex
lude self-symmetries byrequiring that A1; A2 are not aligned with M and the distan
es A1Mand A2M are di�erent.This de�nition 
an immediately be used in the hyperboli
 plane H 2 ,too. However, the demand for �nite points B1; : : : ; C2 is of 
ourse mu
hmore restri
tive. And we have to distinguish whether the 
on
entri

ir
les kAC , kAB are proper 
ir
les, hyper
ir
les or horo
ir
les in H 2 .This means that in the proje
tive model whi
h is used here the 
enterM 
an be lo
ated in the interior, in the exterior or on the absolute 
oni
u of H 2 .3When kAB happens to be tangent to the line A1A2 then the pair (B1; B2) is unique; oneB-point is the point of 
onta
t.



8 We prove in several steps that in H 3 an o
tahedron O with su
h a 
atposition is 
ontinuously 
exible. Due to the proje
tive model of H 3 we
an frequently follow the arguments given in [7℄ for the Eu
lidean 
ase.2.1 Properties of the 
at positionsThe pairs of line pen
ils with 
arriers (A1; A2), (B1; B2) and (C1; C2)span a two-parametri
 linear system S of se
ond-
lass 
urves.Any two di�erent 
urves of this system span a one-parameter linearsystem (`range') whi
h is 
ompletely in
luded in S. Therefore S 
ontainsthe 
ir
les kAB and kAC and the spanned range, i.e., all 
ir
les 
enteredat M , the multipli
ity-two pen
il with 
arrierM , and the absolute 
oni
u, if seen as the set of isotropi
 lines.Any two di�erent ranges from S share one 
urve. This implies thatalso the quadrangle B1C1B2C2 is tangent to a 
ir
le kBC 
entered at M .Hen
e at O no pair of opposite verti
es 
an be distinguished among theothers.Furthermore, with any 
oni
 
 2 S all 
oni
s 
onfo
al4 to 
 are in-
luded in S. And this range shares a 
urve 
0 with the range spannedby the pair of pen
ils with 
arriers (C1; C2) and the twofold pen
il M .We therefore 
on
lude for any position of MPSfrag repla
ements M
A2

A1
B1

B2
C2C1
0 

0

Figure 2. Illustration to Lemma 24Two 
oni
s in H2 are 
onfo
al if and only if these tangential 
oni
s span a linear systemwhi
h 
ontains the absolute 
oni
 u.



Flexible O
tahedra in the Hyperboli
 Spa
e 9Lemma 2 For any 
oni
 
 tangent to the sides of A1B1A2B2 there isa 
onfo
al 
oni
 
0 whi
h passes simultanously through C1 and C2 su
hthat the tangent lines at C1 and C2 interse
t in M (Fig. 2).2.2 Parti
ular 
ase of Ivory's Theorem in H 3Let �0 be a ruled quadri
 in H 3 with a plane � of symmetry. The prin-
ipal se
tion �0 \ � is denoted by 
0. Then the following Lemma 3 is ahyperboli
 
ounterpart of Ivory's Theorem in E3 . The aÆne transforma-tion between `
orresponding points' of 
onfo
al surfa
es in the Eu
lidean
ase is now repla
ed by a selfadjoint linear mapping l in the Weierstra�model or by a 
ollinear transformation in the proje
tive model of H 3 .Lemma 3 For any ruled quadri
 �0 in H 3 with a plane � of symmetryand a real fo
al 
urve 5 
 � � there is a selfadjoint linear mappingl : R4 ! R4 with the following properties:a) Points x0 2 �0 are mapped on points x := l(x0) 2 � obeyinghx; xi = hx0; x0i. Therefore absolute points of �0 remain on 
.b) The restri
tion of l to 
0 := �0 \ � is a bije
tion onto the fo
al
urve 
 whi
h must be lo
ated in the exterior of 
0. Conversely, forany pair (
0; 
) of 
onfo
al 
urves in H 2 with 
 in the exterior of 
0there is a ruled surfa
e �0 through 
0 with 
 as fo
al 
oni
.
) The restri
tion of l to any generator of �0 is an isometry onto atangent line of 
.d) For any x0;y0 2 �0 we obtain equal hyperboli
 distan
es dh(l(x0);y0) =dh(x0; l(y0)).Proof. Let l : R4 ! R4 , x0 7! x = l(x0) be selfadjoint with respe
tto the bilinear form h ; i in (1), i.e., l = l? with h l(x0); yi = hx0; l?(y)i.There is a quadri
 �0 obeyingq(x0;x0) := hx0; x0i � h l(x0); l(x0)i = 0: (18)The points x0 2 �0 are 
hara
terized by the propertyhx0; x0i = h l(x0); l(x0)i = hx; xi:5Two se
ond-order surfa
es �;�0 in H3 are 
onfo
al if and only if their dual surfa
es span alinear system whi
h in
ludes the absolute surfa
e 
 | seen as the set of absolute planes. Ifthe dual of � is singular, i.e., 
onsisting of the tangential planes of a 
oni
 
, then 
 is 
alleda fo
al 
oni
 of �0.



10
PSfrag repla
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Figure 3. Proving the 
exibility of Type 3 with Ivory's TheoremTherefore a

ording to (2) for any two points x0;y0 2 �0 we have astatement of Ivory typedh(l(x0);y) = dh(x0; l?(y)):In addition, the distan
e between two points x0;y0 2 �0 is preserved ifand only if q(x0;y0) = hx0; y0i � h l(x0); l(y0)i = 0:This 
hara
terizes 
onjugate position of x0;y0 with respe
t to �0, i.e.,the 
onne
ting line x0y0 is a generator of �0.Suppose the selfadjoint l has rank 3 with l(R4 ) = �. Let s denote theabsolute pole of �. Then we have0 = h s; l(x0)i = h l(s); x0ifor all x0 2 R4 . This implies l(s) = o, i.e., the �bres of l are perpendi
ularto �.



Flexible O
tahedra in the Hyperboli
 Spa
e 11� needs to be a plane of symmetry for �0 sin
e for all y0 2 � we havehy0; si = 0 and therefore a

ording to (18)q(y0; s) := hy0; si � h l(y0); l(s)i = 0:This means, s is the pole of � also with respe
t to �0. The restri
tionof l to the plane � is bije
tive and transfers 
0 = �0 \ � onto a 
oni
 
.All points of �0 n 
0 are mapped into the exterior of 
 sin
e the imagesof the generators of �0 are lines whi
h meet 
 in exa
tly one point, i.e.,tangent lines.We prove by 
ontradi
tion that 
0 must be lo
ated in the interior of 
 :Suppose there is a point x0 2 
0 whi
h 
oin
ides with the image y of anyy0 2 �0 n 
0. Then Ivory's Theorem would give 0 = dh(x0;y) = dh(x;y0)with x 2 
 � � and y0 distant from �, and this is a 
ontradi
tion.We 
ontinue the proof of Lemma 3 by showing that for ea
h ruledquadri
 �0 there is a selfadjoint mapping l of rank 3 su
h that the equa-tion of �0 is of the form (18). And we show that �0 is 
onfo
al to itsimage under l. For this purpose we turn over to matrix notation:Without restri
tion of generality we suppose that � obeys the equationx3 = 0. Then we 
an set up the selfadjoint mapping asl : x0 7! x = Ax0 with A = 0BB� a00 a01 a02 0�a01 a11 a12 0�a02 a12 a22 00 0 0 0 1CCA (19)sin
e AT = HAH. Hen
e equation (18) gets the form�0 : q(x0;x0) = x0T (H �ATHA)x0 = x0TH(I4 �A2)x0 = 0: (20)The symmetri
 
oordinate matrixQ := H �ATHAof the quadrati
 form q(x0;x0) is supposed to be regular, and from (20)we obtain A2 = I4 �HQ: (21)Points x0 of any plane with 
oordinate ve
tor u0 = ATu have their imagex = l(x0) in the plane uTx = 0. The mapping u 7! ATu is adjoint tol with respe
t to the standard s
alar produ
t. Under this mapping allplanes obeying the quadrati
 form�: uTA(H �ATHA)�1ATu = 0 (22)



12are transferred into planes tangent to �0. So, (22) is the dual represen-tation of the image l(�0), while u0T (H � ATHA)�1u0 = 0 is the dualequation of �0.Now we stateH +A(H �ATHA)�1AT = (H �ATHA)�1: (23)This reveals that l(�0) and the dual of the absolute quadri
 
 with
oordinate matrix H span a range whi
h in
ludes �0, i.e., �0 and l(�0)are 
onfo
al | whether l has rank 4 or 3.For proving eq. (23) we multiply both sides with (H � ATHA) andobtain I4 �HATHA+A(H �ATHA)�1AT (H �ATHA) = I4;and this is an identity be
ause of HAT = AH andAT (H �ATHA) = ATH �ATATHA = (H �ATHA)A:It remains to prove that ea
h hyperboloid �0 in H 3 with � as a planeof symmetry has an equation of type (20). This is equivalent to theexisten
e of a matrix A, whi
h is of type (19) and obeys (21).There are three types of ruled quadri
s �0 to distinguish: The prin
i-pal se
tion 
0 = �0 \ � has(I) a 
enter of symmetry,(II) no 
enter, but an axis of symmetry,(III) neither a 
enter, nor an axis of symmetry.Ad (I): In this 
ase we 
an set up the equation of �0 asq(x0;x0) = 
00x002 + 
11x012 + 
22x022 � x032 = 0:This is a ruled quadri
 with points in the interior of the absolute 
 andwith a real fo
al 
oni
 
 in � if either
00 < 0; 
11; 
22 > 0; 
00 + 
11 > 0 or 
00 + 
11 > 0;or 0 < 
00 < 1; �1 < 
11 < 0; 
22 > 0; 
00 + 
11 > 0:In both 
ases there is a matrix A obeying (21), namelyA2 = diag(1� 
00; 1 + 
11; 1 + 
22; 0):
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00; �p1 + 
11; �p1 + 
22; 0);and the 
orresponding fo
al 
urve 
 obeysx3 = 0 and 
001� 
00 x20 + 
111 + 
11 x21 + 
221 + 
22 x20 = 0:Ad (II): Without restri
tion of generality we 
an set upq(x0;x0) = 
11x012 + 2
01x00x01 + 
22x022 � x032 = 0with 
01 6= 0; 
211 � 4
201; 
22 > 0:A

ording to (21) there is a matrix A obeyingA2 = 0BB� 1 �
01 0 0
01 1 + 
11 0 00 0 1 + 
22 00 0 0 0 1CCAsin
e the upper-left 2�2-matrix has either 
onjugate 
omplex eigenvaluesor a twofold eigenvalue with a one-dimensional eigenspa
e. We obtainA = 0BB� (�Æ + 
11)=2pÆ 
01=pÆ 0 0�
01=pÆ �(Æ + 
11)=2pÆ 0 00 0 p1 + 
22 00 0 0 0 1CCAfor Æ := 2 + 
11 + 2p1 + 
201 + 
11. The fo
al 
urve 
 2 � obeys(
22 + 1) �
201x20 � 2
01x0x1 � (
201 + 
11)x21�� 
22(1 + 
201 + 
11)x22 = 0:Ad (III): We 
an set upq(x0;x0) = 
00(x002 � x012 � x022) + 2
02(x00 � x01)x02 � x032 = 0with 
00 < 0; 
02 6= 0:There is a matrix A obeyingA2 = 0BB� 1� 
00 0 �
02 00 1� 
00 �
02 0
02 �
02 1� 
00 00 0 0 0 1CCA
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e the upper-left 3�3-matrix has a positive triple eigenvalue with aone-dimensional eigenspa
e. The solution isA = 18pÆ3 0BB� 8Æ2 + 
202 �
202 �4
02Æ 0
202 8Æ2 � 
202 �4
02Æ 04
02Æ �4
02Æ 8Æ2 00 0 0 0 1CCAfor Æ := 1� 
00; the fo
al 
urve 
 2 � obeys
00Æ2(x20 � x21 � x22)� 
02(x0 � x1) [
02(x0 � x1)� 2Æx2℄ = 0:The last remark of Lemma 3,b 
an be veri�ed by 
omparing the equa-tions of 
 with that of �0 in the 
ases (I){(III).2.3 Con
lusions for O
tahedra in H 3Now we 
ombine the previous statements: We identify � with theproje
tive model of the hyperboli
 plane H 2 where the 
at position of Ois lo
ated. We see ea
h 
oni
 
0 of Lemma 2 (Fig. 2) as prin
ipal se
tionof a one-sheet hyperboloid �0 and 
 as its fo
al 
urve (see Fig. 3).Then Lemma 3,
 reveals that there is a quadrangle A01B01A02B02 withsides on �0 whi
h is mapped by l onto A1B1A2B2 while all side-lengthsare preserved.6 Under l the verti
es C1; C2 2 
0 are mapped ontoC 01; C 02 2 
 (notation reversed!), and Ivory's Theorem in Lemma 3,dimplies dh(Ai; Cj) = dh(A0i; C 0j) and dh(Bi; Cj) = dh(B0i; C 0j) (see Fig. 3).Hen
e the spatial o
tahedron A01 : : : C 02 is isometri
 to the 
at positionA1 : : : C2 .For 
ompleting the proof of the 
ontinuous 
exibility of O two itemsremain to be 
he
ked:(i) 
0 needs to be inside the fo
al 
urve 
, to say, no tangent line of 
may interse
t 
0, and(ii) 
 and 
0 must be of the same type with respe
t to u, i.e., bothinterse
t u in the same way.It is substantial that due to the properties of the linear system Sthere is a 
oni
 
0 tangent to A1B1A2B2 and passing through both lineelements (Ci;MCi), i = 1; 2. So we 
an use 
ontinuity arguments:Ad (i): Let t denote the side A1B1. While the 2nd-
lass 
urve 
0 withline elements (Ci;MCi) varies, the pole T of t with respe
t to 
0 tra
es6The quadrangle A01B01A02B02 2 � is unique up to the re
e
tion in the plane �.
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0 = 
0 we obtain the point T0 of 
onta
t between t and
0. We get T = M when 
 degenerates into the pen
il with 
arrier M .And S = t0\C1C2 is the pole of t with respe
t to the pair of line pen
ils(C1; C2). Conversely, any point T of line T0M de�nes a unique 
urve 
0of this 
onta
t range.Now it depends on the 
hoi
e of dire
tion when starting from 
0: If Tmoves along t0 torwards the interior of 
0, i.e., if the pair (T;M) separates(T0; S), then the 
orresponding 
oni
 
0 will not interse
t t. This resultsfrom properties of the polarity with respe
t to 
0 and the involution of
onjugate points on t0. So 
0 meets the ne
essary 
ondition; it is in
ludedin the interior of the 
onfo
al 
, whi
h a

ording to Lemma 2 is tangentto t.Ad (ii): When starting from 
0, the types of 
 and 
0 with respe
tto the absolute 
oni
 u 
an only begin to di�er at a position where
 or 
0 
onta
ts u. Sin
e 
 and 
0 are 
onfo
al, this 
onta
t with uhappens for both 
oni
s simultaneously at the same point U . So, it
ould only happen that | from this 
onta
t at U on | one 
oni
 hasreal points of interse
tion near U , the other has no interse
tion. Butthis is a 
ontradi
tion with Lemma 3,a,b, whi
h states that there isa bije
tion 
0 ! 
 mapping absolute points again on absolute points,provided 
0 is in the interior of 
.All o
tahedra of Type 3 admit a se
ond 
at position. This resultsfrom the 
on
entri
 
ir
les kAB ; kAC ; kBC in the given 
at position (seeFig. 1) for the following reason:At ea
h of the six verti
es, e.g. at Ai, the 
onne
ting lines with theother pairs (B1; B2) and (C1; C2) are symmetri
 with respe
t to the linethroughM : Suppose we keep the fa
e A1B1C1 �xed. Then for the se
ond
at position it is ne
essary that ea
h vertex A2; B2; C2 of the oppositefa
e is obtained by re
e
ting the single points A2, B2 and C2 in the sidesB1C1, A1C1 and A1B1, respe
tively (see Fig. 4). In order to guaranteethat the distan
es do not 
hange, we must e.g. demonstrate that there isone isometry in H 2 whi
h maps simultaneously B2 7! B2 and C2 7! C2.The �rst 
an be 
arried out by the 
onse
utive re
e
tions in the linesA1B2 and A1C1. For the latter we use the re
e
tions in A1C2 and A1B1.Now it results from the Three-Re
e
tion-Theorem of absolute geometrythat these produ
ts of re
e
tions are equal be
ause of the symmetrywith respe
t to line A1M .It turns out that in the sense of Fig. 3 this se
ond 
at position isrea
hed when 
0 degenerates into the pair of line pen
ils (C1; C2). The
orresponding hyperboloid � degenerates into a fo
al 
oni
 of 
0.Thus we end up with
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C2Figure 4. The two 
at positions A1B1C1A2B2C2 and A1B1C1A2B2C2 of OTheorem 2 All three 
lasses of Type 3 o
tahedra in H 3 are 
ontinuously
exible and they admit a se
ond 
at position.Theorem 3 There are at least three types of 
ontinuously 
exible o
-tahedra in H 3 . At Type 1 all pairs of opposite verti
es are symmetri
with respe
t to a line, at Type 2 two pairs of verti
es are symmetri
 withrespe
t to a plane whi
h passes through the remaining two verti
es. Flex-ible o
tahedra of Type 3 are unsymmetri
 with 
at positions a

ordingto Fig. 1.Referen
es[1℄ Bri
ard, Raoul. (1897). M�emoire sur la th�eorie de l'o
ta�edre arti
ul�e. J. math.pur. appl., Liouville 3, 113{148.[2℄ Blas
hke, Wilhelm. (1920). �Uber aÆne Geometrie XXVI: Wa
kelige A
ht
a
he.Math. Z. 6, 85{93.[3℄ Connelly, Robert, and Hermann Servatius. (1994). Higher-order rigidity { Whatis the proper de�nition? Dis
rete Comput. Geom. 11, no. 2, 193{200.[4℄ Sabitov, Idzhad Kh. (1992). Lo
al Theory of Bendings of Surfa
es. In Yu.D.Burago, V.A. Zalgaller (eds.): Geometry III, Theory of Surfa
es. En
y
l. of Math.S
ien
es, vol. 48, Springer-Verlag, pp. 179{250.



Flexible O
tahedra in the Hyperboli
 Spa
e 17[5℄ Sta
hel, Hellmuth. (1987). Zur Einzigkeit der Bri
ards
hen Oktaeder. J. Geom.28, 41-56.[6℄ Sta
hel, Hellmuth. (1999). Higher Order Flexibility of O
tahedra. Period. Math.Hung. 39 (1-3), 225{240.[7℄ Sta
hel, Hellmuth. (2002). Remarks on Bri
ard's Flexible O
tahedra of Type 3.Pro
. 10th Internat. Conferen
e on Geomety and Graphi
, Kiev (Ukraine), Vol.1, 8{12.[8℄ Sta
hel, Hellmuth. (2002). Con�guration Theorems on Bipartite Frameworks.Rend. Cir
. Mat. Palermo, II. Ser., 70, 335{351 (2002).[9℄ Wunderli
h, Walter. (1965). Starre, kippende, wa
kelige und bewegli
he A
ht-
a
he. Elem. Math. 20, 25{32.


