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Introduction: Jordan systems

K commutative field

R associative K-algebra (with 1), i.e. a ring with K ⊆ Z(R), 1K = 1R =: 1
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Introduction: Jordan systems

K commutative field

R associative K-algebra (with 1), i.e. a ring with K ⊆ Z(R), 1K = 1R =: 1

J ⊆ R is called a Jordan system in R, if:

• J is a subspace of the vector space R over K,

• 1 ∈ J ,

• a ∈ J , a invertible in R ⇒ a−1 ∈ J (i.e., J is closed under inversion)

Andrea Blunck: Jordan Systems and Associated Geometric Structures ZiF, August 2009 4



Introduction: Jordan systems

Example: R = M(2× 2,K) matrix algebra

J = {symmetric matrices} = {A ∈ R | A = At}

A =

(

a b
b c

)

∈ J invertible =⇒ A−1 = 1
ac−b2

(

c −b
−b a

)

∈ J
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Introduction: chain geometry

The chain geometry associated to a K-algebra R:

Σ = Σ(K, R) = (P, C) (points,“chains”)

where, in particular, P = P(R) is the projective line over the ring R

Abstract (synthetic) concept: chain space
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Introduction: chain geometry

Example: Σ(R, C), the real Möbius plane:

P: points on a sphere in R3

C: circles on the sphere = plane sections of the sphere
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Introduction: chain geometry

Example: Σ(R, C), the real Möbius plane:

P: points on a sphere in R3

C: circles on the sphere = plane sections of the sphere

Stereographic projection from the north pole n ∈ P:

P→ C ∪ {∞} = P(C),

and each circle C ∈ C is mapped to a circle in C or (if n ∈ C) to an
extended line L ∪ {∞}
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Introduction: chain geometry

Σ = (P, C) chain space

S is a subspace of Σ, if

• S ⊆ P,

• (S, C(S)) is a chain space, where C(S) = {all chains contained in S}.
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Introduction: chain geometry

Example:

Let Q be quadric in PG(n, K), n > 3 (with certain properties).

Then, using the plane sections of Q, one obtains a chain space Σ(Q).

Let U be a projective subspace of PG(n, K).

Then Q′ = Q ∩ U is a quadric in U and a subspace of Σ(Q).
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Introduction: chain geometry

Theorem. (A. Herzer 1992). Under certain conditions:

subspaces of Σ(K, R) ←→ Jordan systems in R.

Andrea Blunck: Jordan Systems and Associated Geometric Structures ZiF, August 2009 11



Outline of the talk

• Introduction: Jordan systems, chain geometries, and their connections
(an overview)

• Jordan systems and related algebraic structures

• Chain geometries and their subspaces

•

•

Andrea Blunck: Jordan Systems and Associated Geometric Structures ZiF, August 2009 12



Jordan systems and related algebraic structures

Jordan systems:

• named after Pascual Jordan (1902-1980), German physicist

• name due to Herzer

• connections to: Jordan algebras, Jordan homomorphisms, . . .
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Jordan systems and related algebraic structures

Special Lie and Jordan algebras

R associative K-algebra

−→ Lie algebra R− = (R, +, [ , ]), where [a, b] = ab− ba

A Lie subalgebra of some R− is called a special Lie algebra; and one can
show that every Lie algebra is special.
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Jordan systems and related algebraic structures

Special Lie and Jordan algebras

R associative K-algebra

−→ Lie algebra R− = (R, +, [ , ]), where [a, b] = ab− ba

A Lie subalgebra of some R− is called a special Lie algebra; and one can
show that every Lie algebra is special.

−→ Jordan algebra R+ = (R, +, ◦), where a◦b = 1
2(ab+ba) (charK 6= 2)

A Jordan subalgebra of some R+ is called a special Jordan algebra; and not
every Jordan algebra is special.
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Jordan systems and related algebraic structures

A (commutative) Jordan algebra is a (non-associative) K-algebra (R,+, ◦)
satisfying

• a ◦ b = b ◦ a (commutativity)

• (a ◦ b) ◦ (a ◦ a) = a ◦ (b ◦ (a ◦ a)) (Jordan identity)
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Jordan systems and related algebraic structures

Example: Let M be the set of all matrices of the following type:





α x y
x̄ β z
ȳ z̄ γ



 , α, β, γ ∈ R, x, y, z ∈ O

Then (M, +, ◦) with A ◦ B = 1
2(AB + BA) is an exceptional (i.e. not

special) Jordan algebra.
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Jordan systems and related algebraic structures

Let R be an associative K-algebra, let R∗ the set of units (multiplicatively
invertible elements) of R. Let J ⊆ R be a subspace of the vector space R
with 1 ∈ J . Then we call J

• Jordan system in R, if ∀a ∈ J ∩R∗ : a−1 ∈ J .

• Jordan closed in R, if ∀a, b ∈ J : aba ∈ J .

• strong in R, if ∀a ∈ J : |e(a)| > |K \ e(a)|,
where e(a) = {k ∈ K | k + a ∈ R∗}.
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Jordan systems and related algebraic structures

Let R be an associative K-algebra, let R∗ the set of units (multiplicatively
invertible elements) of R. Let J ⊆ R be a subspace of the vector space R
with 1 ∈ J . Then we call J

• Jordan system in R, if ∀a ∈ J ∩R∗ : a−1 ∈ J .

• Jordan closed in R, if ∀a, b ∈ J : aba ∈ J .

• strong in R, if ∀a ∈ J : |e(a)| > |K \ e(a)|,
where e(a) = {k ∈ K | k + a ∈ R∗}.

Proposition. (Herzer). Let J be a strong Jordan system in R. Then J
is Jordan closed in R.
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Jordan systems and related algebraic structures

Let J be Jordan closed in R (e.g. J a strong Jordan system in R). Then

• J is closed with respect to squaring: For a ∈ J we have a2 = a ·1 ·a ∈ J .

• For a, b ∈ J also ab + ba ∈ J , since ab + ba = (a + b)2 − a2 − b2.
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Jordan systems and related algebraic structures

Let J be Jordan closed in R (e.g. J a strong Jordan system in R). Then

• J is closed with respect to squaring: For a ∈ J we have a2 = a ·1 ·a ∈ J .

• For a, b ∈ J also ab + ba ∈ J , since ab + ba = (a + b)2 − a2 − b2.

So in case of charK 6= 2 we have that J is a special Jordan algebra (a
Jordan subalgebra of R+).
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Jordan systems and related algebraic structures

Example 1: R = K[t] polynomial ring; then R∗ = K∗ = K \ {0}.

J = K + Kt is a subspace of the vector space R with 1 ∈ J .

• J is not closed w.r.t. multiplication,

• J is a Jordan system in R:

a = α + βt ∈ J ∩R∗ =⇒ α 6= 0 and β = 0 =⇒ a−1 = α−1 ∈ J .

• J is not Jordan closed in R: t · 1 · t = t2 /∈ J .

• J is not strong in R: e(t) = ∅.
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Jordan systems and related algebraic structures

Example 2: R = K[t]/(t3) (chain ring); then R∗ = R \Kt + Kt2.

J = K + Kt is a subspace of the vector space R with 1 ∈ J .

• J is not closed w.r.t. multiplication,

• J is not a Jordan system in R:

a = 1 + t ∈ J ∩R∗ but a−1 = 1− t + t2 /∈ J .

• J is not Jordan closed in R: t · 1 · t = t2 /∈ J .

• J is strong in R (if |K| > 2):

e(α + βt) = {k ∈ K | k + α + βt ∈ R∗} = {k ∈ K | k 6= −α}.
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Jordan systems and related algebraic structures

Example 3: R = M(n× n, K) matrix algebra

J = {A ∈ R | A = At} (symmetric matrices)

J is a Jordan system in R and also Jordan closed in R:

(A−1)t = (At)−1, (ABA)t = AtBtAt.
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Jordan systems and related algebraic structures

Example 3: R = M(n× n, K) matrix algebra

J = {A ∈ R | A = At} (symmetric matrices)

J is a Jordan system in R and also Jordan closed in R:

(A−1)t = (At)−1, (ABA)t = AtBtAt.

Generalization: R an arbitrary K-algebra, κ an anti-automorphism of R
(i.e., (ab)κ = bκaκ). Then J = Fixκ = {a ∈ R | a = aκ} is a Jordan
closed Jordan system in R.
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Jordan systems and related algebraic structures

Example 4: O Cayley’s octonions (8-dimensional real non-associative
division algebra); R = End

R
(O) endomorphism ring of the vector space RO

(so R ∼= M(8× 8, R)).

J = {ρu : x 7→ xu | u ∈ O} (right multiplications)

J is a Jordan system in R and also Jordan closed in R, because in O the
following identities are valid:

• (xu)u−1 = x (=⇒ (ρu)−1 = ρu−1)

• ((xu)v)u = x(uvu) (=⇒ ρuρvρu = ρuvu)
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Jordan systems and related algebraic structures

Example 4: O Cayley’s octonions (8-dimensional real non-associative
division algebra); R = End

R
(O) endomorphism ring of the vector space RO

(so R ∼= M(8× 8, R)).

J = {ρu : x 7→ xu | u ∈ O} (right multiplications)

J is a Jordan system in R and also Jordan closed in R, because in O the
following identities are valid:

• (xu)u−1 = x (=⇒ (ρu)−1 = ρu−1)

• ((xu)v)u = x(uvu) (=⇒ ρuρvρu = ρuvu)

Generalization: The same construction works for any algebra (instead of
O) that satisfies the two identities above.
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Jordan systems and related algebraic structures

A Jordan pair is a pair (V +, V −) of vector spaces over K with two trilinear
maps T± : V ± × V ∓ × V ±→ V ± satisfying

• T±(x, a, z) = T±(z, a, x)

• T±(x, a, T±(y, b, z))− T±(y, b, T±(x, a, z))
= T±(T±(x, a, y), b, z) + T±(y, T∓(a, x, b), z)
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Jordan systems and related algebraic structures

A Jordan pair is a pair (V +, V −) of vector spaces over K with two trilinear
maps T± : V ± × V ∓ × V ±→ V ± satisfying

• T±(x, a, z) = T±(z, a, x)

• T±(x, a, T±(y, b, z))− T±(y, b, T±(x, a, z))
= T±(T±(x, a, y), b, z) + T±(y, T∓(a, x, b), z)

Each Jordan algebra (A,+, ◦) gives rise to a Jordan pair as follows:
V + = V − = A, T±(a, b, c) = (a ◦ b) ◦ c + (b ◦ c) ◦ a− (a ◦ c) ◦ b
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Jordan systems and related algebraic structures

A Jordan pair is a pair (V +, V −) of vector spaces over K with two trilinear
maps T± : V ± × V ∓ × V ±→ V ± satisfying

• T±(x, a, z) = T±(z, a, x)

• T±(x, a, T±(y, b, z))− T±(y, b, T±(x, a, z))
= T±(T±(x, a, y), b, z) + T±(y, T∓(a, x, b), z)

Each Jordan algebra (A,+, ◦) gives rise to a Jordan pair as follows:
V + = V − = A, T±(a, b, c) = (a ◦ b) ◦ c + (b ◦ c) ◦ a− (a ◦ c) ◦ b

Example: V + = M(n×m, K), V − = M(m× n, K),
T±(A, B,C) = ABC + CBA.
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Jordan systems and related algebraic structures

A Jordan pair is a pair (V +, V −) of vector spaces over K with two trilinear
maps T± : V ± × V ∓ × V ±→ V ± satisfying

• T±(x, a, z) = T±(z, a, x)

• T±(x, a, T±(y, b, z))− T±(y, b, T±(x, a, z))
= T±(T±(x, a, y), b, z) + T±(y, T∓(a, x, b), z)

Each Jordan algebra (A,+, ◦) gives rise to a Jordan pair as follows:
V + = V − = A, T±(a, b, c) = (a ◦ b) ◦ c + (b ◦ c) ◦ a− (a ◦ c) ◦ b

Example: V + = M(n×m, K), V − = M(m× n, K),
T±(A, B,C) = ABC + CBA.

W. Bertram (2002) associated generalized projective geometries to
Jordan pairs.
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Jordan systems and related algebraic structures

Let J1, J2 be strong Jordan systems in K-algebras R1, R2.

A pair (α, β) of K-semilinear mappings J1 → J2 is called an homotopism,
if

• 1α ∈ J∗
2 = J2 ∩R∗

2,

• ∀a, b ∈ J1 : (aba)α = aαbβaα.
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Jordan systems and related algebraic structures

Let J1, J2 be strong Jordan systems in K-algebras R1, R2.

A pair (α, β) of K-semilinear mappings J1 → J2 is called an homotopism,
if

• 1α ∈ J∗
2 = J2 ∩R∗

2,

• ∀a, b ∈ J1 : (aba)α = aαbβaα.

If 1α = 1, then α = β: xα = (1x1)α = 1αxβ1α = xβ.
Such an α is called a Jordan homomorphism.
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Jordan systems and related algebraic structures

Let J1, J2 be strong Jordan systems in K-algebras R1, R2.

A pair (α, β) of K-semilinear mappings J1 → J2 is called an homotopism,
if

• 1α ∈ J∗
2 = J2 ∩R∗

2,

• ∀a, b ∈ J1 : (aba)α = aαbβaα.

If 1α = 1, then α = β: xα = (1x1)α = 1αxβ1α = xβ.
Such an α is called a Jordan homomorphism.

If R1 = R2, then for u ∈ J∗
1 the pair (α, β) with α : x 7→ ux, β : x 7→ xu−1

is an isotopism J1 → J2, where J2 = uJ1(= J1u
−1). We call it principal

isotopism.
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Jordan systems and related algebraic structures

In particular, if J is a strong Jordan system in R and u ∈ J∗, then also
J ′ = uJ is a strong Jordan system in R (isotopic to J).

Example:

J ′ =

{(

a b
−b c

)

| a, b, c ∈ K

}

is isotopic to the Jordan system of

symmetric matrices via X 7→

(

−1 0
0 1

)

X
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Jordan systems and related algebraic structures

Examples of Jordan endomorphisms:

1) J = Jordan system of symmetric matrices, α : X 7→ Xt
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Jordan systems and related algebraic structures

Examples of Jordan endomorphisms:

1) J = Jordan system of symmetric matrices, α : X 7→ Xt

2) J a ring (i.e. closed w.r.t. multiplication): each ring endomorphism or
anti-endomorphism is a Jordan endomorphism

Andrea Blunck: Jordan Systems and Associated Geometric Structures ZiF, August 2009 37



Jordan systems and related algebraic structures

Examples of Jordan endomorphisms:

1) J = Jordan system of symmetric matrices, α : X 7→ Xt

2) J a ring (i.e. closed w.r.t. multiplication): each ring endomorphism or
anti-endomorphism is a Jordan endomorphism

3) J = R1 × R2 direct product of rings, α1 endomorphism of R1, α2

anti-endomorphism of R2. Then α : J → J : (x1, x2) 7→ (xα1
1 , xα2

2 ) is a
(proper) Jordan homomorphism.

Andrea Blunck: Jordan Systems and Associated Geometric Structures ZiF, August 2009 38



Jordan systems and related algebraic structures

Examples of Jordan endomorphisms:

1) J = Jordan system of symmetric matrices, α : X 7→ Xt

2) J a ring (i.e. closed w.r.t. multiplication): each ring endomorphism or
anti-endomorphism is a Jordan endomorphism

3) J = R1 × R2 direct product of rings, α1 endomorphism of R1, α2

anti-endomorphism of R2. Then α : J → J : (x1, x2) 7→ (xα1
1 , xα2

2 ) is a
(proper) Jordan homomorphism.

4) J = {ρu : x 7→ xu | u ∈ O} (right multiplications in the octonions),
ρc ∈ J∗ fixed (i.e. c ∈ O∗). Then α : ρu 7→ (ρc)

−1ρuρc (= ρu−1cu), is a
Jordan homomorphism, due to Moufang’s identities.
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Outline of the talk

• Introduction: Jordan systems, chain geometries, and their connections
(an overview)

• Jordan systems and related algebraic structures

• Chain geometries and their subspaces

•

•
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Chain geometries and their subspaces

The chain geometry over a K-algbra R:

Σ(K, R) = (P(R), C(K,R)), where

P(R) = {R(1, 0)M |M ∈ GL(2, R)} projective line over R

= {R(a, b) | (a, b) ∈ R2 first row of an invertible matrix}
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Chain geometries and their subspaces

The chain geometry over a K-algbra R:

Σ(K, R) = (P(R), C(K,R)), where

P(R) = {R(1, 0)M |M ∈ GL(2, R)} projective line over R

= {R(a, b) | (a, b) ∈ R2 first row of an invertible matrix}

C(K,R) = {C0M |M ∈ GL(2, R)}, where

C0 = {R(1, 0)N | N ∈ GL(2, K)} = {R(k, 1) | k ∈ K} ∪ {R(1, 0)},

so the chains are the K-sublines of P(R).
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Chain geometries and their subspaces

In other words:

The point set P(R) arises from the standard point p0 = R(1, 0) by taking
all its images under the action of GL(2, R):

R(x, y) 7→ R(x, y)

(

a b
c d

)

= R(xa + yc, xb + yd)
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Chain geometries and their subspaces

In other words:

The point set P(R) arises from the standard point p0 = R(1, 0) by taking
all its images under the action of GL(2, R):

R(x, y) 7→ R(x, y)

(

a b
c d

)

= R(xa + yc, xb + yd)

The chain set arises in the same way from the standard chain

C0 = {R(k, 1) | k ∈ K} ∪ {R(1, 0)}

(which can be considered as the projective line over K).
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Chain geometries and their subspaces

Σ(K, R) satisfies the axioms of a chain space Σ = (P, C):

(CS1) Every chain contains at least three points, every point lies on at least
one chain.

(CS2) Any three pairwise distant points lie together in exactly one chain.

Here two points are called distant, if they are different and joined by at
least one chain.

(CS3) For every point p the residual space Σp = (D(p), C(p)), with
D(p) = {q ∈ P | q distant to p}, C(p) = {C \ {p} | p ∈ C ∈ C}, is a partial
affine space, i.e. an affine space with some parallel classes of lines missing.
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Chain geometries and their subspaces

Quadric chain spaces:

Let Q be a quadric in PG(n, K) satisfying the following conditions:

• Q possesses a secant

• Q is not contained in the union of two hyperplanes

Then Σ(Q) = (P(Q), C(Q)) defined below is a chain space:

P(Q) = {p ∈ Q | p not a double point}, where a point p is a double point
if the tangent space at p is the whole projective space,

C(Q) = {Q∩E | E admissible plane}, where a plane E is called admissible,
if Q ∩ E contains at least three points but no line (so the chains are oval
conics).
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Chain geometries and their subspaces

Examples of quadric chain spaces:

1) Q a quadratic cone in PG(3, R): Then Σ(Q) is the real Laguerre plane,
isomorphic to Σ(R, D), where D is the ring of dual numbers over R, i.e.
D = R + Rε with ε2 = 0.
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Chain geometries and their subspaces

Examples of quadric chain spaces:

1) Q a quadratic cone in PG(3, R): Then Σ(Q) is the real Laguerre plane,
isomorphic to Σ(R, D), where D is the ring of dual numbers over R, i.e.
D = R + Rε with ε2 = 0.

2) Q a hyperbolic quadric in PG(3, R): Then Σ(Q) is the real Minkowski
plane, isomorphic to Σ(R, A), where A is the ring of double numbers over
R, i.e. A = R× R (direct product).
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Chain geometries and their subspaces

Examples of quadric chain spaces:

3) Q the Klein quadric in PG(5,K). Then the Klein correspondence yields
that Σ(Q) is isomorphic to the geometry Σ′ = (P′, C′), where

P
′ = {all lines in PG(3, K)}, C′ = {all reguli in PG(3,K)}.
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Chain geometries and their subspaces

Examples of quadric chain spaces:

3) Q the Klein quadric in PG(5,K). Then the Klein correspondence yields
that Σ(Q) is isomorphic to the geometry Σ′ = (P′, C′), where

P
′ = {all lines in PG(3, K)}, C′ = {all reguli in PG(3,K)}.

Moreover, Σ(Q) is isomorphic to the chain geometry Σ(K, R), where
R = M(2× 2,K). The mapping

R(A, B) 7→ row space (A B)

is an isomorphism Σ(K, R)→ Σ′.
(Note that R(A, B) ∈ P(R)⇔ rk(A B) = 2.)
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Chain geometries and their subspaces

Let Σ = (P, C) be a chain space.

A subset S ⊆ P is called a subspace of Σ, if (S, C(S)) is a chain space,
where C(S) = {all chains contained in S}.

Equivalently, S satisfies the following conditions:

• If p, q, r ∈ S are pairwise distant, then the (unique) chain through p, q, r
is contained in S.

• If p, q ∈ S are distant and C ∈ C contains q, then the unique chain C ′

through p contacting C in q is contained in S.
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Chain geometries and their subspaces

Examples: Subspaces of Σ(Q), where Q is the Klein quadric:

Let U be 3-dimensional projective subspace of PG(5,K). Then Q′ = Q∩U
gives rise to a subspace of Σ(Q).

There are three types: The line U⊥ is either a tangent, a secant, or an
external line.

Andrea Blunck: Jordan Systems and Associated Geometric Structures ZiF, August 2009 52



Chain geometries and their subspaces

Type 1: U⊥ tangent: Then Q′ is a cone and Σ(Q′) is a Laguerre plane.

The associated algebra K(ε) of dual numbers over K can be found as a
subalgebra in R = M(2× 2, K) via

a + bε 7−→

(

a b
0 a

)

The corresponding line model in PG(3, K) is a parabolic linear congruence.
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Chain geometries and their subspaces

Type 2: U⊥ secant: Then Q′ is a hyperbolic quadric and Σ(Q′) is a
Minkowski plane.

The associated algebra K ×K of double numbers over K can be found as
a subalgebra in R = M(2× 2, K) via

(a, b) 7−→

(

a 0
0 b

)

The corresponding line model in PG(3,K) is a hyperbolic linear congruence.
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Chain geometries and their subspaces

Type 3: U⊥ external: Then Q′ is an elliptic quadric and Σ(Q′) is a Möbius
plane.

The associated algebra L is a quadratic field extension over K. It can
be found as a subalgebra in R = M(2 × 2, K). E.g., if L = K(t) with
t2 = s ∈ K then let

a + bt 7−→

(

a b
sb a

)

The corresponding line model in PG(3, K) is an elliptic linear congruence.
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Chain geometries and their subspaces

Examples: Subspaces of Σ(Q), where Q is the Klein quadric:

Let U be 4-dimensional projective subspace (a hyperplane) of PG(5, K).
Then Q′ = Q ∩ U gives rise to a subspace of Σ(Q).

There are two types: U is tangent or not.
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Chain geometries and their subspaces

Type 1: U tangent hyperplane: Then Q′ is a cone over some quadric in a
3-space.

The associated subalgebra of M(2×2, K) is the algebra T of upper triangular
matrices (also called algebra of ternions).
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Chain geometries and their subspaces

Type 1: U tangent hyperplane: Then Q′ is a cone over some quadric in a
3-space.

The associated subalgebra of M(2×2, K) is the algebra T of upper triangular
matrices (also called algebra of ternions).

Instead, one may also use the algebra of lower triangular matrices, which is
conjugate to T via

(

a b
0 c

)

=

(

0 1
1 0

) (

c 0
b a

)(

0 1
1 0

)
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Chain geometries and their subspaces

Type 1: U tangent hyperplane: Then Q′ is a cone over some quadric in a
3-space.

The associated subalgebra of M(2×2, K) is the algebra T of upper triangular
matrices (also called algebra of ternions).

Instead, one may also use the algebra of lower triangular matrices, which is
conjugate to T via

(

a b
0 c

)

=

(

0 1
1 0

) (

c 0
b a

)(

0 1
1 0

)

The corresponding line model in PG(3,K) is a special linear complex, i.e.
the set of all lines meeting a fixed given line.
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Chain geometries and their subspaces

Remark: If S and T are isomorphic subalgebras of R = M(2× 2, K), then
(by the Skolem-Noether theorem) they are conjugate in R.

This means that not only the associated subspaces of Σ(K, R) are
isomorphic, but the line models in PG(3, K) are projectively equivalent.
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Chain geometries and their subspaces

Type 2: U non-tangent hyperplane: Then Q′ is the Lie quadric.

There is no associated subalgebra of M(2× 2, K).

So Σ(Q′) cannot be described as some Σ(K, S).

The corresponding line model in PG(3,K) is a general linear complex, i.e.
the set of all isotropic lines w.r.t. a symplectic polarity.
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Chain geometries and their subspaces

Type 2: U non-tangent hyperplane: Then Q′ is the Lie quadric.

There is no associated subalgebra of M(2× 2, K).

So Σ(Q′) cannot be described as some Σ(K, S).

The corresponding line model in PG(3,K) is a general linear complex, i.e.
the set of all isotropic lines w.r.t. a symplectic polarity.

Remark: The points and lines on the Lie quadric form an orthogonal
generalized quadrangle, and the Klein correspondence gives an isomorphism
onto the dual of a symplectic quadrangle.
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Chain geometries and their subspaces

Subspaces defined by Jordan systems

Let J be a strong Jordan system in the K-algebra R. Then

P(J) = {R(1 + ab, a) | a, b ∈ J}

is a subspace of Σ(K, R).
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Chain geometries and their subspaces

Subspaces defined by Jordan systems

Let J be a strong Jordan system in the K-algebra R. Then

P(J) = {R(1 + ab, a) | a, b ∈ J}

is a subspace of Σ(K, R).

Question: Is the condition “strong” needed?

If J is strong, then

P(J) = {R(1 + ab, a) | a ∈ J, b ∈ J∗} = {R(a, 1 + ab) | a, b ∈ J}
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Chain geometries and their subspaces

Conversely:

Theorem. (Herzer 1992). Let S be a strong subspace of Σ(K, R). Then
there are a strong Jordan system J in R and a matrix M ∈ GL(2, R) such
that

S = P(J)M = {R(1 + ab, a)M | a, b ∈ J}.

Remark: If the algebra R is strong, then each subspace of Σ(K, R) is
strong.
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Chain geometries and their subspaces

Example: Let J be the Jordan system of all symmetric matrices in
R = M(2× 2,K), with |K| ≥ 5. .

Then P(J) is isomorphic the subspace of Σ(Q) given by the Lie quadric.

Andrea Blunck: Jordan Systems and Associated Geometric Structures ZiF, August 2009 66



Chain geometries and their subspaces

Example: Let J be the Jordan system of all symmetric matrices in
R = M(2× 2,K), with |K| ≥ 5.

Then P(J) is isomorphic the subspace of Σ(Q) given by the Lie quadric.

Remark: J is strong if |K| ≥ 5: For A ∈ J , k ∈ K we have

k + A = kI + A /∈ J∗⇐⇒ det(kI + A) = 0,

and this quadratic equation in k has most two solutions.
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Outline of the talk

• Introduction: Jordan systems, chain geometries, and their connections
(an overview)

• Jordan systems and related algebraic structures

• Chain geometries and their subspaces

•

•
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Outline of the talk

• Introduction: Jordan systems, chain geometries, and their connections
(an overview)

• Jordan systems and related algebraic structures

• Chain geometries and their subspaces

• Quadric chain spaces

•
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Quadric chain spaces

Let Σ(Q) = (P(Q), C(Q)) be a quadric chain space as above. The
conditions on the quadric Q imply that it can be described as follows:

The underlying vector space is V ×K ×K, and

Q = {K(v, x, y) | (v, x, y) 6= (0, 0, 0), Q(v) = xy},

where Q is a quadratic form on V for which there exists a w ∈ V with
Q(w) = 1.
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Quadric chain spaces

Let Σ(Q) = (P(Q), C(Q)) be a quadric chain space as above. The
conditions on the quadric Q imply that it can be described as follows:

The underlying vector space is V ×K ×K, and

Q = {K(v, x, y) | (v, x, y) 6= (0, 0, 0), Q(v) = xy},

where Q is a quadratic form on V for which there exists a w ∈ V with
Q(w) = 1.

Example: For V = K4, Q(v1, v2, v3, v4) = v1v2 − v3v4, we get the Klein
quadric.
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Quadric chain spaces

Theorem. (A.B. 1997). Let |K| ≥ 5. Then the chain space Σ(Q) is
isomorphic to the subspace P(J) of the chain geometry Σ(K, R), where R
is the Clifford algebra Cl(V,Q) and J is the Jordan system J = V w in R.
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Quadric chain spaces

The Clifford algebra R = Cl(V, Q) is obtained as follows: If b1, b2, . . . , bn

is a basis of V , then

1, b1, b2, . . . , bn, b1b2, b1b3, . . . , b1bn, . . . , . . . , b1b2 · · · bn

is a basis of R (so R has dimension 2n), and the multiplication is determined
by the rules

∀v, u ∈ V : v2 = Q(v), uv + vu = Q(u + v)−Q(u)−Q(v).

Andrea Blunck: Jordan Systems and Associated Geometric Structures ZiF, August 2009 73



Quadric chain spaces

The Clifford algebra R = Cl(V, Q) is obtained as follows: If b1, b2, . . . , bn

is a basis of V , then

1, b1, b2, . . . , bn, b1b2, b1b3, . . . , b1bn, . . . , . . . , b1b2 · · · bn

is a basis of R (so R has dimension 2n), and the multiplication is determined
by the rules

∀v, u ∈ V : v2 = Q(v), uv + vu = Q(u + v)−Q(u)−Q(v).

In particular, V is a subspace of the vector space R, but V is not closed
w.r.t. multiplication, and 1 /∈ V . Moreover, v ∈ V is invertible⇔ Q(v) 6= 0,
because then v · 1

Q(v)v = 1
Q(v)v

2 = 1.
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Quadric chain spaces

J = V w (with Q(w) = 1) is a Jordan system in R = Cl(V,Q):

• 1 = Q(w) = ww ∈ J

• a = vw ∈ J∗ =⇒

a−1 = w−1v−1 = wQ(v)−1v = Q(v)−1wv =

= Q(v)−1(Q(v + w)−Q(w)−Q(v)− vw) =

= Q(v)−1
(

(Q(v + w)−Q(w)−Q(v)) · 1− vw
)

∈ J .
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Quadric chain spaces

Example: The Lie quadric can be described by v1v2 + v2
3 − xy = 0.
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Quadric chain spaces

Example: The Lie quadric can be described by v1v2 + v2
3 − xy = 0.

The Clifford algebra Cl(V, Q) is R = K1 + V + . . ., where we take

V =

{(

v3 v1

v2 −v3

)

| vi ∈ K

}

, Q(v) = −det v.

Then v · v = Q(v) · 1.
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Quadric chain spaces

Example: The Lie quadric can be described by v1v2 + v2
3 − xy = 0.

The Clifford algebra Cl(V, Q) is R = K1 + V + . . ., where we take

V =

{(

v3 v1

v2 −v3

)

| vi ∈ K

}

, Q(v) = −det v.

Then v · v = Q(v) · 1. For w =

(

0 1
1 0

)

∈ V we have Q(w) = 1 and

J = V w =

{(

v1 v3

−v3 v2

)

| vi ∈ K

}

,

which is isotopic to the Jordan system of symmetric matrices.
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Outline of the talk

• Introduction: Jordan systems, chain geometries, and their connections
(an overview)

• Jordan systems and related algebraic structures

• Chain geometries and their subspaces

• Quadric chain spaces

•

Andrea Blunck: Jordan Systems and Associated Geometric Structures ZiF, August 2009 79



Outline of the talk

• Introduction: Jordan systems, chain geometries, and their connections
(an overview)

• Jordan systems and related algebraic structures

• Chain geometries and their subspaces

• Quadric chain spaces

•

Thank you for your attention !
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