1/44

ZIF LECTURES LECTURE II Seven qubits, octonions and the Fano plane

M. J. Duff

Physics Department Imperial College

October 2009 Bielefeld

 Here we extend the black hole/qubit correspondence to the maximally supersymmetric N = 8 supergravities in D = 4 and D = 5

Lecture II: Seven qubits, octonions and the Fano plane

- N = 8 generalization
- E7 and seven qubits
- Octonions and the Fano plane
- Classification of N = 8 black holes and entanglement
- Five-dimensional black holes and qutrits
- Recent developments

N = 8 case

N = 8 GENERALIZATION

N = 8 **GENERALIZATION**

<ロト < 回 > < 臣 > < 臣 > 王 のへで 4/44

Supergravity in $D \leq 11$

D	scalars/vectors	G	Н
10A	1 / 1	<i>SO</i> (1, 1, <i>R</i>)	_
10B	2/0	SL(2,R)	<i>SO</i> (2, <i>R</i>)
9	3/3	$SL(2,R) \times SO(1,1,R)$	SO(2,R)
8	7 / 6	SL(2,R) imes SL(3,R)	$SO(2,R) \times SO(3,R)$
7	14 / 10	SL(5,R)	<i>SO</i> (5, <i>R</i>)
6	25 / 16	<i>SO</i> (5, 5, <i>R</i>)	$SO(5,R) \times SO(5,R)$
5	42 / 27	$E_{6(6)}(R)$	<i>USP</i> (8)
4	70 / 28	$E_{7(7)}(R)$	<i>SU</i> (8)
3	128/0	$E_{8(8)}(R)$	<i>SO</i> (16, <i>R</i>)

Table: The symmetry groups (G) of the low energy supergravity theories with 32 supercharges in different dimensions (D) and their maximal compact subgroups (H).

Embeddings

The N = 2 STU solution can usefully be embedded in

- N = 4 supergravity with symmetry SL(2) × SO(6, 22), where the charges transform as a (2, 28).
- N = 8 supergravity with symmetry $E_{7(7)}$, where the charges transform as a 56.

Remarkably, the same five parameters suffice to describe these 56-charge black holes.

$E_{7(7)}$ and seven qubits

$E_{7(7)}$ and seven qubits

There is, in fact, a quantum information theoretic interpretation of the 56 charge N = 8 black hole in terms of a Hilbert space consisting of seven copies of the three-qubit Hilbert space. It relies on the decomposition E₇₍₇₎ ⊃ [SL(2)]⁷

Decomposition of the 56

Under

 $E_{7(7)} \supset$

 $SL(2)_A \times SL(2)_B \times SL(2)_C \times SL(2)_D \times SL(2)_E \times SL(2)_F \times SL(2)_G$

the 56 decomposes as

$$56 \rightarrow$$

$$(2,2,1,2,1,1,1)$$

$$+(1,2,2,1,2,1,1)$$

$$+(1,1,2,2,1,2,1)$$

$$+(2,1,1,1,2,2,1)$$

$$+(1,2,1,1,1,2,2)$$

$$+(2,1,2,1,1,1,2,2)$$

Seven qubits

 It admits the interpretation of a tripartite entanglement of seven qubits, Alice, Bob, Charlie, Daisy, Emma, Fred and George:

$$egin{aligned} & a_{ABD} | ABD
angle \ & + b_{BCE} | BCE
angle \ & + c_{CDF} | CDF
angle \ & + d_{DEG} | DEG
angle \ & + e_{EFA} | EFA
angle \ & + f_{FGB} | FGB
angle \ & + g_{GAC} | GAC
angle \end{aligned}$$

E7 Entanglement

The following diagram may help illustrate the tripartite entanglement between the 7 qubits

Cartan invariant

• The entanglement measure given by Cartan's quartic $E_{7(7)}$ invariant.

$$I_4 = -\text{Tr}((xy)^2) + \frac{1}{4}\text{Tr}(xy)^2 - 4(\text{Pf}(x) + \text{Pf}(y))$$

 x^{IJ} and y_{IJ} are again 8 × 8 antisymmetric charge matrices Duff and Ferrara: quant-ph/0609227 Levay: hep-th/0610314 x^{IJ}

$$\begin{aligned} x^{IJ} = \\ \begin{pmatrix} 0 & -a_{111} & -b_{111} & -c_{111} & -d_{111} & -e_{111} & -f_{111} & -g_{111} \\ a_{111} & 0 & f_{001} & d_{100} & -c_{010} & g_{010} & -b_{100} & -e_{001} \\ b_{111} & -f_{001} & 0 & g_{001} & e_{100} & -d_{010} & a_{010} & -c_{100} \\ c_{111} & -d_{100} & -g_{001} & 0 & a_{001} & f_{100} & -e_{010} & b_{010} \\ d_{111} & c_{010} & -e_{100} & -a_{001} & 0 & b_{001} & g_{100} & -f_{010} \\ e_{111} & -g_{010} & d_{010} & -f_{100} & -b_{001} & 0 & c_{001} & a_{100} \\ f_{111} & b_{100} & -a_{010} & e_{010} & -g_{100} & -c_{001} & 0 & d_{001} \\ g_{111} & e_{001} & c_{100} & -b_{010} & f_{010} & -a_{100} & -d_{001} & 0 \end{pmatrix} \end{aligned}$$

УIJ

$$y_{IJ} =$$

(0	$-a_{000}$	$-b_{000}$	$-c_{000}$	$-d_{000}$	$-e_{000}$	-f ₀₀₀	$-g_{000}$
<i>a</i> 000	0	f ₁₁₀	<i>d</i> ₀₁₁	- <i>c</i> ₁₀₁	g ₁₀₁	$-b_{011}$	$-e_{110}$
b_{000}	- <i>f</i> ₁₁₀	0	<i>g</i> 110	<i>e</i> ₀₁₁	$-d_{101}$	<i>a</i> ₁₀₁	- <i>c</i> ₀₁₁
<i>C</i> 000	$-d_{011}$	$-g_{110}$	0	<i>a</i> ₁₁₀	f ₀₁₁	$-e_{101}$	b ₁₀₁
d_{000}	<i>C</i> ₁₀₁	- <i>e</i> ₀₁₁	- <i>a</i> ₁₁₀	0	b_{110}	g ₀₁₁	- <i>f</i> ₁₀₁
e_{000}	$-g_{101}$	d_{101}	- <i>f</i> ₀₁₁	$-b_{110}$	0	<i>C</i> ₁₁₀	<i>a</i> ₀₁₁
f ₀₀₀	b ₀₁₁	- <i>a</i> ₁₀₁	e_{101}	$-g_{011}$	- <i>c</i> ₁₁₀	0	d_{110}
\ <i>9</i> 000	e_{110}	<i>C</i> ₀₁₁	$-b_{101}$	f ₁₀₁	- <i>a</i> ₀₁₁	$-d_{110}$	0 /

I_4

Schematically,

$$\begin{split} l_4 &= a^4 + b^4 + c^4 + d^4 + e^4 + f^4 + g^4 \\ &+ 2 \Big[a^2 b^2 &+ a^2 c^2 &+ a^2 d^2 &+ a^2 e^2 &+ a^2 f^2 &+ a^2 g^2 \\ &+ b^2 c^2 &+ b^2 d^2 &+ b^2 e^2 &+ b^2 f^2 &+ b^2 g^2 \\ &+ c^2 d^2 &+ c^2 e^2 &+ c^2 f^2 &+ c^2 g^2 \\ &+ d^2 e^2 &+ d^2 f^2 &+ d^2 g^2 \\ &+ e^2 f^2 &+ e^2 g^2 \\ &+ f^2 g^2 \Big] \end{split}$$

+8[abce+bcdf+cdeg+defa+efgb+fgac+gabd],

where a^4 is Cayley's hyperdeterminant etc

N = 8 case

• Remarkably, because the generating solution depends on the same five parameters as the *STU* model, its classification of states will exactly parallel that of the usual three qubits. Indeed, the Cartan invariant reduces to Cayley's hyperdeterminant in a canonical basis.

Kallosh and Linde: hep-th/0602061

OCTONIONS AND THE FANO PLANE

OCTONIONS AND THE FANO PLANE

Fano plane

An alternative description is provided by the Fano plane which has seven points, representing the seven qubits, and seven lines (the circle counts as a line) with three points on every line, representing the tripartite entanglement, and three lines through every point.

Fano plane G ヘロト ヘロト ヘヨト ヘヨト

Octonions

The Fano plane also provides the multiplication for the imaginary octonions:

	Α	В	С	D	Е	F	G	
A		D	G	-B	F	-E	-C	
В	-D		Е	Α	-C	G	-F	
С	-G	-E		F	В	-D	Α	
D	В	-A	-F		G	С	-E	
E	-F	С	-B	-G		Α	D	
F	Е	-G	D	-C	-A		В	
G	С	F	-A	E	-D	-B		

CLASSIFICATION

CLASSIFICATION

CLASSIFICATION

 Furthermore, one can relate the classification of three-qubit entanglements to the classification of supersymmetric black holes as in the following table:

Table

Class	SA	S_B	S_{C}	Det a	Black hole	Susy
A-B-C	0	0	0	0	small	1/2
A-BC	0	> 0	> 0	0	small	1/4
B-CA	> 0	0	> 0	0	small	1/4
C-AB	> 0	> 0	0	0	small	1/4
W	> 0	> 0	> 0	0	small	1/8
GHZ	> 0	> 0	> 0	< 0	large	1/8
GHZ	> 0	> 0	> 0	> 0	large	0

Table: Classification of three-qubit entanglements and their corresponding D = 4 black holes.

Wrapped D3-branes and 3 qubits

WRAPPED M2-BRANES AND 2 QUTRITS

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Qutrit interpretation

- All this suggests that the analogy between D = 5 black holes and three-state systems (0 or 1 or 2), known as qutrits [Duff and Ferrara: 0704.0507 [hep-th]], should involve the choice of wrapping a brane around one of three circles in T^3 . This is indeed the case, with the number of qutrits being two.
- The two-qutrit system (where *A*, *B* = 0, 1, 2) is described by the state

$$|\Psi
angle=a_{AB}|AB
angle,$$

and the Hilbert space has dimension $3^2 = 9$.

2-tangle

• The bipartite entanglement of Alice and Bob is given by the 2-tangle

$$\tau_{AB} = 27 \det \rho_A = 27 |\det a_{AB}|^2,$$

where ρ_A is the reduced density matrix

$$\rho_{\mathbf{A}} = \mathrm{Tr}_{\mathbf{B}} |\Psi\rangle \langle \Psi|.$$

• The determinant is invariant under $SL(3)_A \times SL(3)_B$, with a_{AB} transforming as a (3,3), and under a discrete duality that interchanges A and B.

(a) < (a) < (b) < (b)

26/44

D = 5 black hole

- For subsequent comparison with the D = 5 black hole, we restrict our attention to unnormalized states with real coefficients a_{AB} .
- There are three algebraically independent invariants : τ_{AB} , C_2 (the sum of the principal minors of ρ_{AB}) and the norm $\langle \Psi | \Psi \rangle$, corresponding to the dimension of

$$rac{\mathbb{R}^3 imes\mathbb{R}^3}{SO(3) imes SO(3)}$$

namely, 9 - 6 = 3.

D = 5 black hole

 Hence, the most general two-qutrit state can be described by just three parameters, which may conveniently taken to be three real numbers N₀, N₁, N₂,.

$$|\Psi
angle = \mathit{N}_0|00
angle + \mathit{N}_1|11
angle + \mathit{N}_2|22
angle$$

 A classification of two-qutrit entanglements, depending on the rank of the density matrix, is given in the following table:

D = 5 table

Class	<i>C</i> ₂	$ au_{AB}$	Black hole	Susy
A-B	0	0	small	1/2
Rank 2 Bell	> 0	0	small	1/4
Rank 3 Bell	> 0	> 0	large	1/8

Table: Classification of two-qutrit entanglements and their corresponding D = 5 black holes.

D = 5 black hole

- The 9-charge N = 2, D = 5 black hole may also be embedded in the N = 8 theory in different ways. The most convenient microscopic description is that of three M2-branes wrapping the (58), (69), (710) cycles of the T^6 compactification of D = 11 M-theory, with wrapping numbers N_0 , N_1 , N_2 and intersecting over a point [Papadopoulos and Townsend: hep-th/9603087; Klebanov and Tseytlin:hep-th/9604166].
- To make the black hole/qutrit correspondence we associate the two T³ with the SL(3)_A × SL(3)_B of the two qutrits Alice and Bob, where |0⟩ corresponds to xoo, |1⟩ to oxo and |2⟩ to oox. The 9 different cycles then yield the 9 different basis vectors |AB⟩ as in the last column of the following Table:

D = 5 table

5	6	7	8	9	10	macro charges	micro charges	$ AB\rangle$
x	0	0	x	0	0	p ⁰	N ₀	$ 00\rangle$
o	х	0	o	х	0	p ¹	N ₁	11>
о	0	х	0	0	x	p ²	N ₂	22〉
x	0	0	o	х	0	p ³	0	01〉
o	х	0	o	0	x	p ⁴	0	12⟩
о	0	х	x	0	0	р ⁵	0	20〉
x	0	0	o	0	x	$ ho^6$	0	02〉
o	х	0	x	0	0	p ⁷	0	10>
o	0	х	0	х	о	p ⁸	< = 0 > < = 3 > <	21)

≣ ∽ < (~ 30/44 We see immediately that we reproduce the three parameter two-qutrit state |Ψ⟩:

$$|\Psi
angle = \mathit{N_0}|00
angle + \mathit{N_1}|11
angle + \mathit{N_2}|22
angle$$

• The black hole entropy, both macroscopic and microscopic, turns out to be given by the 2-tangle

$$S = 2\pi \sqrt{|\det a_{AB}|},$$

and the classification of the two-qutrit entanglements matches that of the black holes .

• Note that the non-vanishing cubic combinations appearing in det *a*_{AB} correspond to groups of 3 wrapping cycles with no crosses in common, i.e. that intersect over a point.

Embeddings

- There is, in fact, a quantum information theoretic interpretation of the 27 charge N = 8, D = 5 black hole in terms of a Hilbert space consisting of three copies of the two-qutrit Hilbert space. It relies on the decomposition $E_{6(6)} \supset [SL(3)]^3$ and admits the interpretation of a bipartite entanglement of three qutrits, with the entanglement measure given by Cartan's cubic $E_{6(6)}$ invariant. Duff and Ferrara: 0704.0507 [hep-th]
- Once again, however, because the generating solution depends on the same three parameters as the 9-charge model, its classification of states will exactly parallel that of the usual two qutrits. Indeed, the Cartan invariant reduces to det a_{AB} in a canonical basis.

Ferrara and Maldacena: hep-th/9706097

Summary

- Our M-theory analysis of the D = 5 black hole has provided an explanation for the appearance of the qutrit three-valuedness (0 or 1 or 2) that was lacking in the previous treatments: The brane can wrap one of the three circles in each T^3 .
- The number of qutrits is two because of the number of extra dimensions is six.
- The three parameters of the real two-qutrit state are seen to correspond to three intersecting M2-branes.

RECENT DEVELOPMENTS

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ → ○ ○ ○
34/44

(日)

35/44

Recent developments

- Whether or not there is an underlying physical connection, this two-way process teaches us new things about both black holes and QI.
- Recent examples are:

FTS

 Correspondence between a three-qubit state vector ψ and a Freudenthal triple system Ψ over the Jordan algebra C ⊕ C ⊕ C:

$$\psi = a_{ABC} | ABC > \leftrightarrow$$

$$\Psi = \begin{pmatrix} a_{111} & (a_{001}, a_{010}, a_{100}) \\ (a_{110}, a_{101}, a_{011}) & a_{000} \end{pmatrix}, \quad (1)$$

the structure of the FTS naturally captures the SLOCC classification.

L. Borsten, D. Dahanayake, M. J. Duff, H. Ebrahim and W. Rubens, arXiv:0812.3322 [quant-ph].

Class	Rank	FTS rank condition				
01000		vanishing	non-vanishing			
Null	0	Ψ	_			
A-B-C	1	$3T(\Psi,\Psi,\Phi)+\{\Psi,\Phi\}\Psi$	Ψ			
A-BC	2a	$\mathcal{T}(\Psi,\Psi,\Psi)$	$\gamma^{\mathcal{A}}$			
B-CA	2b	$T(\Psi,\Psi,\Psi)$	γ^{B}			
C-AB	2c	$T(\Psi,\Psi,\Psi)$	γ^{C}			
W	3	$q(\Psi)$	$\mathcal{T}(\Psi,\Psi,\Psi)$			
GHZ	4	_	$q(\Psi)$			

Table: The entanglement classification of three qubits as according to the FTS rank system

Table: Coset spaces of the orbits of the 3-qubit state space $C^2 \times C^2 \times C^2$ under the action of the SLOCC group $[SL(2, C)]^3$.

Class	FTS Rank	Orbits	dim
Separable	1	$\frac{[SL(2,C)]^3}{[SO(2,C)]^2 \ltimes C^3}$	4
Bi-separable	2	$\frac{[\mathit{SL}(2,\mathit{C})]^3}{\mathit{O}(3,\mathit{C})\times \mathit{C}}$	5
W	3	$\frac{[SL(2,C)]^3}{C^2}$	7
GHZ	4	$\frac{[SL(2,C)]^3}{[SO(2,C)]^2}$	7

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

New duality for black holes; arXiv:0903.5517

- It is well-known that the quantized charges x of 4D black holes may be assigned to elements of an integral Freudenthal triple system (FTS) whose automorphism group is the corresponding U-duality. The FTS is equipped with a quartic form Δ(x) whose square root yields the lowest order black hole entropy.
- We show that a subset of these black holes, for which Δ(x) is necessarily a perfect square, admit a *Freudenthal dual* with integer charges x̃, for which x̃ = −x and Δ(x̃) = Δ(x) Some, but not all, of other discrete U-duality invariants are also Freudenthal invariant.
- Similar story in 5D where we introduce a *Jordan dual A*^{*}, for which *A*^{**} = *A* with cubic norm *N*(*A*^{*}) = *N*(*A*), whose square is necessarily a perfect cube.

Octonions and supersmmetry

• In the $\mathcal{N} = 8$ case, the **56** of $E_{7(7)}$ decomposes as

$$56 \rightarrow (2, 12) + (1, 32),$$
 (2)

under

$$E_{7(7)} \supset SL(2) \times SO(6,6) \tag{3}$$

where SL(2) is the electric-magnetic S-duality and SO(6,6) is the T-duality group.

- The (2, 12) is identified as the NS-NS sector where as the (1, 32) is associated with the R-R charges.
- In the Fano plane picture going from NS to NS+RR is going from quaternions to octonions. Suggestive of hidden role of octonions in M-theory?

Superqubits

- We provide a supersymmetric generalisation of *n* quantum bits by extending the LOCC entanglement equivalence group [SU(2)]ⁿ to the supergroup [uOSp(2|1)]ⁿ and the SLOCC equivalence group [SL(2, C)]ⁿ to the supergroup [OSp(2|1)]ⁿ.
- We introduce the appropriate supersymmetric generalisations of the conventional entanglement measures for the cases of n = 2 and n = 3.
- In particular, super-GHZ states are characterised by a non-vanishing superhyperdeterminant.

L. Borsten, D. Dahanayake, M. J. Duff and W. Rubens, arXiv:0908.0706 [quant-ph].

- L. Borsten, D. Dahanayake, M. J. Duff, H. Ebrahim and W. Rubens, "Black Holes, Qubits and Octonions," Phys. Rep. (to appear), arXiv:0809.4685 [hep-th].
- M. J. Duff, "String triality, black hole entropy and Cayley's hyperdeterminant," Phys. Rev. D 76, 025017 (2007) [arXiv:hep-th/0601134]
- R. Kallosh and A. Linde, "Strings, black holes, and quantum information," Phys. Rev. D 73, 104033 (2006) [arXiv:hep-th/0602061].
- P. Levay, "Stringy black holes and the geometry of entanglement," Phys. Rev. D 74, 024030 (2006) [arXiv:hep-th/0603136].

- M. J. Duff and S. Ferrara, "E₇ and the tripartite entanglement of seven qubits," Phys. Rev. D 76, 025018 (2007) [arXiv:quant-ph/0609227].
- P. Levay, "Strings, black holes, the tripartite entanglement of seven qubits and the Fano plane," Phys. Rev. D 75, 024024 (2007) [arXiv:hep-th/0610314].
- M. J. Duff and S. Ferrara, "E₆ and the bipartite entanglement of three qutrits," Phys. Rev. D 76, 124023 (2007) [arXiv:0704.0507 [hep-th]].
- P. Levay, "A three-qubit interpretation of BPS and non-BPS STU black holes," Phys. Rev. D 76, 106011 (2007) [arXiv:0708.2799 [hep-th]].
- L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens and H. Ebrahim, "Wrapped branes as qubits," Phys.Rev.Lett.100:251602,2008 arXiv:0802.0840 [hep-th].

- P. Levay, M. Saniga and P. Vrana, "Three-Qubit Operators, the Split Cayley Hexagon of Order Two and Black Holes," arXiv:0808.3849 [quant-ph].
- P. Lévay and P. Vrana, "Special entangled quantum systems and the Freudenthal construction," arXiv:0902.2269 [quant-ph].
- P. Levay, M. Saniga, P. Vrana, and P. Pracna, "Black Hole Entropy and Finite Geometry," *Phys. Rev.* D79 (2009) 084036, arXiv:0903.0541 [hep-th].
- M. Saniga, P. Levay, P. Pracna, and P. Vrana, "The Veldkamp Space of GQ(2,4)," arXiv:0903.0715 [math-ph].