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Part 1

Rectangular Matrices

The first part deals with some basic notions and results

from the Geometry of Rectangular Matrices. Square ma-

trices are not excluded, and their particular properties will

be exhibited in due course.

Our exposition follows the book of Z.-X. Wan [22].



Basic Notions

• Let F be a field (not necessarily commutative) or, said differently, a division ring.

• We denote by Fn the left vector space of row vectors x = (x1, x2, . . . , xn) with

entries from F .

• Let Fm×n, m, n ≥ 1, be the set of all m × n matrices over a division ring F .

There is yet no structure on the set Fm×n.



A Single Matrix

• Each matrix A ∈ Fm×n determines a linear mapping

fA : Fm → Fn : x 7→ xA.

• All linear mappings Fm → Fn arise in this way.

• The left row space of A is the subspace of Fn which is generated by the rows of

A. It equals the image of the linear mapping fA.

• The dimension of the left row space of A is called the left row rank of A.



The Dual Approach

Each column vector (single column matrix) a∗ ∈ Fm×1 =: Fm∗ determines a linear

form Fm → F : x 7→ x · a∗. The elements of Fm∗ can be identified with the dual

vector space of Fm, which is a right vector space over F .

This yields our second interpretation: Any matrix A ∈ Fm×n determines a linear

mapping between dual vector spaces, viz.

fT
A : Fn∗ → Fm∗ : y∗ 7→ Ay∗

which is known as the transpose (or dual) of the mapping fA : x 7→ xA.

We obtain, mutatis mutandis, the notions right column space and right column rank

of A.



Remarks

For any matrix one may introduce four notions of rank (left / right, row / column).

• The left row rank equals the right column rank of A. Either of these numbers will

simply be called the rank of A, in symbols rk A.

• The right row rank equals the left column rank of A.

We shall not make use of these ranks.

• The left row rank and the right row rank of A may be different.

Example The matrix
(

1 j

i k

)

over the real quaternions H has left row rank 1 and right row rank 2, because

i(1, j) = (i, k), whereas (1, j)i = (i,−k) 6= (i, k).



Vector Space on Fm×n

The sum of two matrices A, B ∈ Fm×n corresponds in a natural way to the sum of

the associated mappings fA + fB (and dually).

Even though a matrix A can be multiplied by a scalar λ ∈ F from the left hand side

(λA) or the right hand (Aλ), these products are in general not useful in terms of our

interpretations of matrices as linear mappings:

“The λ is never where it should be!”

Only when λ is in the centre of F , in symbols λ ∈ Z(F ), then λA = Aλ may be

viewed as the product of λ and either of the two linear mappings given by A:

(λfA) : x 7→ λ(xA) = x(λA), (fT
Aλ) : y∗ 7→ (Ay∗)λ = (λA)y∗.

Hence Fm×n is a (left or right) vector space over Z(F ). This will be of some impor-

tance in what follows.



Rank One Matrices

Given a column vector a∗ = (a∗
1, a

∗
2, . . . , a

∗
m)T (i. e. a linear form on Fm) and a vector

c = (c1, c2, . . . , cn) we obtain the linear mapping

Fm → Fn : x 7→ x · a∗ · c.

Its matrix is therefore

a∗ · c =













a∗
1c1 a∗

1c2 . . . a∗
1cm

a∗
2c1 a∗

2c2 . . . a∗
2cm

. . . . . . . . . . . . . . . . . . . . . .

a∗
nc1 a∗

nc2 . . . a∗
ncm













.

This matrix has rank one provided that a∗ 6= 0 and c 6= 0. All matrices with rank ≤ 1

arise in this way.



Graph on Fm×n

Let Fm×n, m,n ≥ 2, be the set of all m × n matrices over a field F . Hence Fm×n

contains matrices of rank ≥ 2.

• Two matrices A and B are called adjacent if A − B is of rank one.

• We consider Fm×n as the set of vertices of an undirected graph the edges of

which are precisely the (unordered) pairs of adjacent matrices.

• Two matrices A and B are at the graph-theoretical distance k ≥ 0 if, and only if,

rk(A − B) = k.



Almost a “Middle Product”
Given a∗ ∈ Fm∗ \ {0}, c ∈ Fn \ {0}, and λ ∈ F one may “multiply the rank one matrix

A := a∗c by λ ∈ F from the middle” as follows:

(a∗λ)c = a∗(λc) =: a∗λc

This “product” in general depends on the vectors which are chosen to factorise A.

Indeed, we have

A = (a∗α)(α−1c) for all α ∈ F \ {0},

and

(a∗α)λ(α−1c) = a∗(αλα−1)c.

Nevertheless, the set of matrices

{a∗λc | λ ∈ F}

depends only on the rank one matrix A and the ground field F .



Lines
Given a∗ ∈ Fm∗ \ {0}, c ∈ Fn \ {0} and any matrix R ∈ Fm×n the set

{a∗λc + R | λ ∈ F}

is called a LINE of Fm×n.

Let L be the set of all such lines. Then
(

Fm×n,L
)

is a partial linear space, called

the space of m × n matrices over F .

In this context the elements of Fm×n will also be called POINTS.

Two matrices A and B are adjacent if, and only if, they are distinct and COLLINEAR.

In this case the unique LINE joining A and B equals {A, B}∼∼, where

M∼ := {X | ∀Y ∈ M : X is adjacent or equal to Y }.



Example

We consider the real quaternions H. The LINE joining the 2 × 2 zero matrix and the

matrix
(

1

i

)

(

1 i
)

=

(

1 i

i −1

)

=: A

equals the set of all matrices

(

1 · λ · 1 1 · λ · i

i · λ · 1 i · λ · i

)

=

(

λ λi

iλ iλi

)

,

where λ ranges in H. The matrices (POINTS) of this LINE are in general neither left

proportional nor right proportional to A.



Example
We consider the space of 2× 2 matrices over the Galois field GF(2). All its rank one

matrices can be read off from the following table:

(

1 0
) (

0 1
) (

1 1
)

(

1

0

) (

1 0

0 0

) (

0 1

0 0

) (

1 1

0 0

)

(

0

1

) (

0 0

1 0

) (

0 0

0 1

) (

0 0

1 1

)

(

1

1

) (

1 0

1 0

) (

0 1

0 1

) (

1 1

1 1

)

Thus there are nine LINES through the zero matrix, each comprising two POINTS.

The space of 2×2 over GF(2) matrices is a partial affine space, viz. the affine space

on GF(2)2×2 with six parallel classes of lines removed.



Summary

• The space (Fm×n,L) is a connected partial linear space.

• If F is a proper skew field then Fm×n can be considered as a vector space (affine

space) over F from the left and right hand side, and (more naturally) as a vector

space over the centre Z(F ). The LINES of L are in general not lines of any of

these affine spaces.

• If F is a commutative field then Fm×n can be considered as a (left or right) vector

space (affine space) over F = Z(F ). The LINES of L comprise some of the

parallel classes of lines of this affine space.



Automorphisms

An automorphism of the space (Fm×n,L) is a bijection

ϕ : Fm×n → Fm×n : X 7→ Xϕ

preserving adjacency in both directions. Consequently, LINES are mapped onto

LINES under ϕ and ϕ−1.

Examples

• Translations: X 7→ X + R, where R ∈ Fm×n.

• Equivalence transformations: X 7→ PXQ, where P ∈ GLm(F ) and Q ∈ GLn(F ).

• Field automorphisms: X 7→ Xσ, where σ is an automorphism of F acting on the

entries of X .

• σ-Transpositions: X 7→ (Xσ)T, where σ is an antiautomorphism of F acting on

the entries of X . (Only for n = m provided that such a σ exists.)



Remarks on Automorphisms

• If m = n and F is a commutative field then the transposition X 7→ XT is an

automorphism.

• If m = n and F is a proper skew field then X 7→ XT need not be automorphism.

E. g., over the real quaternions H we already saw that

rk

(

1 j

i k

)

= 1, whereas rk

(

1 j

i k

)T

= rk

(

1 i

j k

)

= 2.

• If m = n, F is a proper skew field, and σ is an antiautomorphism then X 7→ Xσ

need not be an automorphism. E. g., letting σ = to be the conjugation of H

gives

rk

(

1 j

i k

)

= 1, whereas rk

(

1 j

i k

)

= rk

(

1 −j

−i −k

)

= 2.

• There are proper skew fields without any antiautomorphism [4].



Fundamental Theorem
Theorem (L. K. Hua 1951 et al.) Every bijective mapping

ϕ : Fm×n → Fm×n : X 7→ Xϕ

preserving adjacency in both directions is of the form

X 7→ PXσQ + R,

where P ∈ GLm(F ), Q ∈ GLn(F ), R ∈ Fm×n, and σ is an automorphism of F .

If m = n, then we have the additional possibility that

X 7→ P (Xσ)TQ + R

where P,Q,R are as above, σ is an antiautomorphism of F , and T denotes transpo-
sition.

The assumptions in Hua’s fundamental theorem can be weakened.

W.-l. Huang and Z.-X. Wan [18], P. Šemrl [20].



Avoiding Matrices

From a theoretical viewpoint one may define the space of m × n matrices over F in

a coordinate free way.

with coordinates / matrices without coordinates / matrices

Fm V . . . m-dimensional left vector space over F

Fn W . . . n-dimensional left vector space over F

Fm×n HomF (V, W ) ∼= V ∗ ⊗F W . . . tensor product

a∗ · c a∗ ⊗ c . . . pure tensor

rank of a matrix rank of a linear mapping



Part 2

Grassmannians

We establish an embedding of any space of rectangular

matrices in an appropriate Grassmann space. For square

matrices this embedding will reveal neat connections with

the projective lines over matrix rings.



Projective Space on F s+1

Let PG(s, F ) be the projective space over the left vector space F s+1, where F is a

field.

• In what follows we do not distinguish between subspaces of F s+1 and subspaces

of PG(s, F ).

• The dimension dimW of a subspace W is always understood as the “projective

dimension”, which is one less than the vector space dimension.

• Subspaces of dimension 0, 1, 2, 3, and s−1 are called points, lines, planes, solids,

and hyperplanes, respectively.

• We use the shorthand d-subspace for a d-dimensional subspace.



Grassmann Graph on Gs,d

Let Gs,d(F ) be the Grassmannian of all d-subspaces of PG(s, F ). We assume 1 ≤

d ≤ s − 2 in order to avoid trivial cases.

• Two d-subspaces W1 and W2 are called adjacent if dimW1 ∩ W2 = d − 1.

• We consider Gs,d(F ) as the set of vertices of an undirected graph the edges of

which are the (unordered) pairs of adjacent d-subspaces.

• Two d-subspaces W1 and W2 are at graph theoretical distance k ≥ 0 if, and only

if,

dimW1 ∩ W2 = d − k.

• For any subset M ⊂ Gs,d(F ) we define

M∼ := {X | ∀Y ∈ M : X is adjacent or equal to Y }.



Grassmann Space on Gs,d

Given a (d − 1)-subspace U and a (d + 1)-subspace V of PG(s, F ) with U ⊂ V the

set

{W ∈ Gs,d(F ) | U ⊂ W ⊂ V }

is called a pencil.

The set Gs,d(F ), considered as a set of POINTS, together with the set P of all its pen-

cils, considered as its set of LINES, is called the Grassmann space of d-subspaces

of PG(s, F ).

The Grassmann space (Gs,d(F ),P) is a connected partial linear space.

Two d-subspaces W1 and W2 are adjacent if, and only if, they are distinct and

COLLINEAR. In this case the unique LINE joining W1 and W2 equals {W1,W2}
∼∼.



Fundamental Theorem

(W. L. Chow 1949) Every bijective mapping

ϕ : Gs,d(F ) → Gs,d(F ) : X 7→ Xϕ

preserving adjacency in both directions is of the form

X 7→ {xσP | x ∈ X ⊂ F s+1},

where P ∈ GLm(F ) and σ is an automorphism of F .

If s = 2d + 1, then we have the additional possibility that

X 7→ {y ∈ F s+1 | yP (xσ)T = 0 for all x ∈ X ⊂ F s+1},

where P is as above, σ is an antiautomorphism of F , and T denotes transposition.

The assumptions in Chow’s fundamental theorem can be weakened.

W.-l. Huang [11].



An Embedding

We adopt the assumptions from Part 1. The m × m identity matrix will be denoted

by Im. Horizontal augmentation of (suitable) matrices A, B is written as A|B.

Fm×n can be embedded in the Grassmannian Gm+n−1,m−1(F ) as follows:

Fm×n → Fm×(m+n) → Gm+n−1,m−1(F )

X 7→ X |Im 7→ left rowspace of X |Im

• Matrices X,Y ∈ Fm×n are adjacent if, and only if, their images in Gm+n−1,m−1(F )

are adjacent.

• LINES of matrices are mapped to LINES (pencils) of the Grassmann space with

one element removed.



Projective Matrix Spaces

Each element of the Grassmannian Gm+n−1,m−1(F ) can be viewed as the left row

space of a matrix X |Y with rank m, where X ∈ Fm×n and Y ∈ Fm×m.

• X |Y and X ′|Y ′ have the same left row space, if and only if, there is a T ∈ GLm(F )

with X ′ = TX and Y ′ = TY .

• One may consider a pair (X,Y ) ∈ Fm×n × Fm×m as left homogeneous coordi-

nates of an element of Gm+n−1,m−1(F ) provided that rk(X |Y ) = m.

This means that X |Y possesses an invertible m × m submatrix. (This submatrix

need not be Y ).

The Grassmann space on Gm+n−1,m−1(F ) is often called the projective space of

m × n matrices over F , even though it is not a projective space in the usual sense.



Points at Infinity
• A subspace with coordinates (X,Y ) is in the image of the embedding

Fm×n → Gm+n−1,m−1(F )

if, and only if, Y is invertible. In this case its only preimage is the matrix Y −1X ∈

Fm×n.

• All subspaces with coordinates (X,Y ), where Y /∈ GLm(F ), are called POINTS

at infinity of the Grassmann space.

Clearly, this notion depends on the chosen embedding.

• There is a distinguished (n − 1)-subspace of PG(m + n − 1, F ) given by the left

row space of the n × (m + n) matrix In|0.

• An element of Gm+n−1,m−1(F ) is at infinity, precisely when it has at least one

common point with this (n − 1)-subspace.

See also R. Metz [19].



Example

The space of 2×2 matrices over GF(2) comprises 16 elements. It can be embedded

in the Grassmann space of lines in PG(3, 2). Note that #G3,1(GF(2)) = 35.

There is a unique distinguished line, viz. the row space of I2|0. There are

3 · 6 + 1 = 19

lines which have at least one common point with this line. These are the POINTS at

infinity of the Grassmann space.

The 35 − 19 = 16 lines which are skew to the line with coordinates (I2, 0) are in

one-one correspondence with the 16 matrices of GF(2)2×2.



Example

The space of 2×3 matrices over GF(2) comprises 64 elements. It can be embedded

in the Grassmannian of lines in PG(4, 2). Note that #G4,1(GF(2)) = 155.

There is a unique distinguished plane, viz. the row space of I3|0. There are

7 · 12 + 7 = 91

lines which have at least one common point with this plane. They are the POINTS

at infinity of the Grassmann space.

The 155 − 91 = 64 lines which are skew to the plane with coordinates (I3, 0) are in

one-one correspondence with the 64 matrices of GF(2)2×3.



Square Matrices

We consider square matrices (m = n ≥ 2) and the full matrix algebra R :=

(Fn×n, +, ·) over Z(F ).

In terms of our left-homogeneous coordinates (X,Y ) ∈ R2 the POINT set of the

Grassmannian G2n−1,n−1(F ) is the same as the POINT set of the projective line

P(R) over the full matrix algebra R (up to irrelevant differences). Cf. the lecture of

A. Blunck or [2].

There is one difference though:

• The basic notion in the Grassmann space is adjacency: dimW1 ∩ W2 = n − 2.

• The basic notion in ring geometry is being distant: dimW1 ∩ W2 = −1.

Each of these relations can be expressed in terms of the other. A. Blunck, H. H. [1],

W.-l. Huang, H. H. [15].

Hence the two structural approaches are essentially the same.



Part 3

Symmetric Matrices

The third part deals with some basic notions and results

from the Geometry of Symmetric Matrices over a commu-

tative field. Some results will depend on the characteristic

of the ground field being two or not.

Our exposition follows the book of Z.-X. Wan [22].



Basic Notions

• Let F be a commutative field.

• Let Sn(F ) ⊂ Fn×n, n ≥ 1, be the set of all symmetric n × n matrices over F .

• If CharF 6= 2 then the n×n zero matrix is the only alternating matrix which is also

symmetric.

• If CharF = 2 then any alternating n × n matrix is also symmetric. A symmetric

matrix is non-alternating if, and only if, at least one of its diagonal entries is 6= 0.

The set Sn(F ) is a subset of the matrix space Fn×n.



A Single Symmetric Matrix

• Each symmetric matrix A ∈ Sn(F ) determines a linear mapping

fA : Fn → Fn∗ : y 7→ AyT.

This provides the link with Part 1.

Moreover, the matrix A defines a symmetric bilinear form

gA : Fn × Fn → F : (x, y) 7→ xAyT.

We shall adopt this interpretation of the matrix A.

• All symmetric bilinear forms Fn × Fn → F arise in this way.

• Since F is commutative, we may unambiguously speak of the rank of A.



Symmetric Rank One Matrices

Given a column vector a∗ = (a∗
1, a

∗
2, . . . , a

∗
m)T ∈ Fn∗ we obtain the symmetric bilinear

form

Fn × Fn → F : (x, y) 7→ (x · a∗)(y · a∗) = x · (a∗ · (a∗)T) · yT.

Its matrix is therefore

a∗ · (a∗)T =













a∗
1a

∗
1 a∗

1a
∗
2 . . . a∗

1a
∗
n

a∗
2a

∗
1 a∗

2a
∗
2 . . . a∗

2a
∗
n

. . . . . . . . . . . . . . . . . . . . . . .

a∗
na∗

1 a∗
na∗

2 . . . a∗
na∗

n













.

This matrix has rank one provided that a∗ 6= 0. All symmetric matrices with rank ≤ 1

arise in this way.



Vector Space on Sn(F )

The sum of two symmetric matrices A, B ∈ Fn×n corresponds in a natural way to

the sum of the associated bilinear forms gA + gB.

Since F coincides with its centre Z(F ), for any λ ∈ F the (obviously symmetric)

matrix λA = Aλ may be viewed as the product of the scalar λ and the symmetric

bilinear form gA:

(λgA) : (x, y) 7→ λ(xAyT) = x(λA)yT.

Hence Sn(F ) is a (left or right) vector space over F .



Graph on Sn(F )
We assume n ≥ 2. Hence Sn(F ) contains matrices of rank ≥ 2.

• The notion of adjacency is inherited form Fn×n.

• We consider Sn(F ) as the set of vertices of an undirected graph the edges of

which are precisely the (unordered) pairs of adjacent symmetric matrices.

• Two symmetric matrices A and B are at the graph-theoretical distance k ≥ 0 if,

and only if,

k =

{

rk(A − B) and A − B is non-alternating or zero,

rk(A − B) + 1 and A − B is alternating and non-zero.

The second possibility occurs only for CharF = 2 and 3 ≤ k ≤ n + 1, where k is

odd.

• The diameter (maximal distance) in this graph is n or n+1. The second possibility

occurs precisely when CharF = 2 and n is even.



Example
The graph of symmetric 2 × 2 matrices over GF(2) can be illustrated as a cube:
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(

0 0
0 1
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(

1 0
0 1
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(

1 1
1 1

)

(

1 1
1 0

)

(

0 1
1 0

)

(

0 1
1 1

)

The diameter of this graph is 3. Opposite points of the cube stand for points at
distance 3.



Lines
Given a∗ ∈ Fn∗ \ {0} and any matrix R ∈ Sn(F ) the set

{λa∗(a∗)T + R | λ ∈ F}

is called a LINE of Sn(F ).

Let LS be the set of all such LINES. Then
(

Sn(F ),LS

)

is a partial linear space, called

the space of symmetric n × n matrices over F .

In this context the elements of Sn(F ) will also be called POINTS.

Two symmetric matrices A and B are adjacent if, and only if, they are distinct and

COLLINEAR. In this case the unique LINE joining A and B equals

{A, B}∼ = {X ∈ Sn(F ) | (X = A) or (X = B) or (X is adjacent to A and B)}

= {λ(A − B) + B | λ ∈ F}.



Example

We consider the space of symmetric 2 × 2 matrices over the Galois field GF(2). It

contains the following three symmetric matrices with rank 1:

(

1 0

0 0

)

,

(

0 0

0 1

)

,

(

1 1

1 1

)

.

Thus there are three LINES through the zero matrix, each comprising two POINTS.

The space of symmetric 2 × 2 matrices over GF(2) is a partial affine space, viz. the

affine space on S2(GF(2)) with 4 = 7 − 3 parallel classes of lines removed.



Example

We consider the three-dimensional space-time R
3 with the indefinite quadratic form

given by the matrix diag(1, 1,−1). The mapping

γ : R
3 → S2(R) : (x1, x2, x3) 7→

(

x2 + x3 x1

x1 −x2 + x3

)

is bijective and

− det((x1, x2, x3)
γ) = −det

(

x2 + x3 x1

x1 −x2 + x3

)

= x2
1 + x2

2 − x2
3.

The light-like lines of R3 correspond under γ to the LINES of LS and vice versa.



Summary

• The space (Sn(F ),LS) is a connected partial linear space.

• Since F is a commutative field, the set Sn(F ) can be considered as a (left or

right) vector space (affine space) over F . The LINES of LS comprise some of the

parallel classes of lines of this affine space.

Remark: In the book of Wan [22] also another kind of subset of Sn(F ) is called

a “line”. Subsets of this kind provide a powerful tool for proving the Fundamental

Theorem of the Geometry of Symmetric Matrices in [22]. They will not be considered

here.



Automorphisms

An automorphism of the space (Sn(F ),LS) is a bijection

ϕ : Sn(F ) → Sn(F ) : X 7→ Xϕ

preserving adjacency in both directions. Consequently, LINES are mapped onto

LINES under ϕ and ϕ−1.

Examples

• Translations: X 7→ X + R, where R ∈ Sn(F ).

• Congruence transformations: X 7→ PXPT, where P ∈ GLn(F ).

• Field automorphisms: X 7→ Xσ, where σ is an automorphism of F acting on the

entries of X .

• Scalings: X 7→ λX , where λ ∈ F \ {0}.

All these automorphisms have the property

rk(X − Y ) = rk(Xϕ − Y ϕ) for all X,Y ∈ Sn(F ).



An Exceptional Automorphism

The following mapping is an automorphism of S3(GF(2)):





x11 x12 x13

x12 x22 0
x13 0 x33



 7→





x11 x12 x13

x12 x22 0
x13 0 x33



 ,





x11 x12 x13

x12 x22 1
x13 1 x33



 7→





x11 + 1 x12 + 1 x13 + 1
x12 + 1 x22 1
x13 + 1 1 x33



 .

(∗)

The mapping (∗) is an involution fixing 32 out of the 64 matrices of S2(GF2)). The
zero matrix is fixed, but (∗) is not rank preserving, since some alternating matrices
with rank two are mapped to non-alternating with rank three. For example,





0 0 0
0 0 1
0 1 0



 7→





1 1 1
1 0 1
1 1 0



 .



Fundamental Theorem

Theorem (Hua 1949 et al.). Every bijective mapping

ϕ : Sn(F ) → Sn(F ) : X 7→ Xϕ

preserving adjacency in both directions is of the form

X 7→ λPXσPT + R,

where P ∈ GLn(F ), R ∈ Sn(F ), σ is an automorphism of F , and λ ∈ F \ {0}, up to
the following exceptional case.
If F = GF(2) and n = 3 then the group of all automorphisms is generated by the
transformation (∗) and the mappings from above.

The assumptions in Hua’s fundamental theorem can be weakened. W.-l. Huang,

Höfer, Wan [16]. See also W.-l. Huang [12].



Avoiding Matrices

From a theoretical viewpoint one may define the space of symmetric n × n matrices

over F in a coordinate free way.

with coordinates / matrices without coordinates / matrices

Fn V . . . n-dimensional left vector space over F

Fn∗ V ∗ . . . dual vector space of V

Sn(F ) space of symmetric bilinear forms on V
∼= S2(V

∗) . . . symmetric square of V ∗

a∗ · (a∗)T a∗a∗ . . . pure symmetric tensor

rank of a matrix rank of a symmetric bilinear form



Part 4

Symplectic Dual Polar Spaces

We establish an embedding of any space of symmetric ma-

trices in an appropriate symplectic dual polar space.



Symplectic Spaces

Let PG(2n− 1, F ) be the projective space over the left vector space F 2n, where F is

a field.

The matrix

K :=

(

0 In

−In 0

)

defines a non-degenerate alternating bilinear form

F 2n × F 2n → F : (x, y) 7→ xKyT.

It determines a symplectic polarity on the set of subspaces of PG(2n − 1, F )

W 7→ W⊥, where W⊥ := {y ∈ F 2n | xKyT = 0 for all x ∈ W}.

We have dimW + dimW⊥ = 2n − 2. (Vector space dimensions sum up to 2n.)



Subspaces

With respect to ⊥ any subspace W has precisely one of the following properties.

• non-isotropic: W and W⊥ have no point in common.

• isotropic: W and W⊥ have at least one common point.

• totally isotropic: W is contained in W⊥.

• All points are isotropic. Hence they are also totally isotropic.

• Any line is either non-isotropic or totally isotropic.

• Each totally isotropic subspace is contained in a maximal one. Any maximal totally

isotropic subspace W satisfies W = W⊥ and has dimension n − 1.



Symplectic Polar Spaces

The symplectic polar space on (PG(2n − 1, F ),⊥) is defined as follows:

• Its points are the points of PG(2n − 1, F ).

• Its lines are the totally isotropic lines with respect to ⊥.

We shall not be concerned with these polar spaces.



Graph on I2n−1,n−1(F )

Let I2n−1,n−1(F ) be the set of all maximal totally isotropic subspaces of
(PG(2n − 1, F ),⊥). This is a subset of G2n−1,n−1(F ).

• Two totally isotropic (n − 1)-subspaces W1 and W2 are called adjacent if

dimW1 ∩ W2 = n − 2.

• We consider the set I2n−1,n−1(F ) as the vertices of an undirected graph the
edges of which are the (unordered) pairs of adjacent totally isotropic (n − 1)-
subspaces. It is called the dual polar graph on I2n−1,n−1(F ).

• Two totally isotropic (n − 1)-subspaces W1 and W2 are at graph theoretical dis-
tance k ≥ 0 if, and only if,

dimW1 ∩ W2 = n − 1 − k.

• Distance in the dual polar graph = distance in the Grassmann graph.



Symplectic Dual Polar Spaces

The symplectic dual polar space on (PG(2n − 1, F ),⊥) is defined as follows:

• Its POINT set is I2n−1,n−1(F ), i. e., the set of maximal totally isotropic subspaces

of (PG(2n − 1, F ),⊥).

• Its LINES are the pencils of the form

{W ∈ G2n−1,n−1(F ) | U ⊂ W ⊂ U⊥},

where U is any (n − 2)-dimensional totally isotropic subspace.

Any subspace W in the pencil as above is automatically totally isotropic.



Symplectic Dual . . . (cont.)

The POINTS / LINES of this dual polar space are also POINTS / LINES of the Grass-

mann space (G2n−1,n−1(F ),P).

The symplectic dual polar space on (PG(2n − 1, F ),⊥) is a connected partial linear

space.

Two totally isotropic (n − 1)-subspaces W1 and W2 are adjacent if, and only if, they

are distinct and COLLINEAR. In this case the unique LINE joining W1 and W2 equals

{W1,W2}
∼.



Example
The dual polar space on (PG(3,GF(2)),⊥) has 15 POINTS (the 15 lines of a general

linear complex in PG(2, 3)) and 15 LINES (the 15 pencils of lines contained in the

complex). It coincides with the generalised quadrangle GQ(2, 2).

We use here the Cremona-Richmond configuration for illustration.



Fundamental Theorem

Theorem (W. L. Chow 1949) Every bijective mapping

ϕ : I2n−1,n−1(F ) → I2n−1,n−1(F ) : X 7→ Xϕ

preserving adjacency in both directions is of the form

X 7→ {xσP | x ∈ X ⊂ F 2n},

where P ∈ GSp2n(F ) and σ is an automorphism of F .

Here GSp2n denotes the general symplectic group: P ∈ F 2n×2n is in GSp2n(F ) if,

and only if

PKPT = µK for some µ ∈ F \ {0}.

The assumptions in Chow’s fundamental theorem can be weakened.

W.-l. Huang [13].



An Embedding

We adopt the assumptions from Part 3.

Sn(F ) can be embedded in the Grassmannian G2n−1,n−1(F ) like before:

Sn(F ) → Fn×2n → G2n−1,n−1(F )

X 7→ X |In 7→ left rowspace of X |In

• Matrices X,Y ∈ Sn(F ) are adjacent if, and only if, their images in G2n−1,n−1(F )

are adjacent.

• LINES of matrices are mapped to LINES (pencils) of the Grassmann space with

one element removed.



Projective Matrix Spaces
Let W ∈ G2n−1,n−1(F ) be an (n − 1)-subspace with left homogeneous coordinates

(X,Y ) ∈ Fn×n × Fn×n. Then the following assertions are equivalent:

1. W is totally isotropic with respect to ⊥, i. e., W ∈ I2n−1,n−1(F ).

2. (X |Y )

(

0 In

−In 0

)

(X |Y )T = 0.

3. XY T = Y XT.

In particular, for Y = In the last conditions reads X = XT. Hence the embedding

from the previous slide can be considered as a mapping

Sn(F ) → I2n−1,n−1(F ).

The dual polar space on I2n−1,n−1(F ) is often called the projective space of sym-

metric n × n matrices over F , even though it is not a projective space in the usual

sense.



Points at Infinity

• A totally isotropic subspace with coordinates (X,Y ) is in the image of the embed-

ding

Sn(F ) → I2n−1,n−1(F )

if, and only if, Y is invertible. In this case its only preimage is the matrix Y −1X ∈

Sn(F ).

• All totally isotropic subspaces with coordinates (X,Y ), where Y /∈ GLm(F ), are

called points at infinity of the dual polar space. Clearly, this notion depends on the

chosen embedding.

• There is a distinguished totally isotropic subspace of PG(2n − 1, F ) given by the

left row space of the matrix (In|0).

• An element of I2n−1,n−1(F ) is at infinity, precisely when has at least one common

point with this (n − 1)-dimensional subspace.



Example
The space of symmetric 2 × 2 matrices over GF(2) can be embedded in the sym-

plectic dual polar space on (PG(3,GF(2)),⊥).

(

0 0

0 0

)

(

1 1

1 1

)

-

(

0 0

0 1

)

(

1 1

1 0

)

@
@

@
@

@
@

@
@

@
@R

(

1 0

0 0

)

(

1 0

0 1

)

(

0 1

1 1

)

(

0 1

1 0

)

(

1 0 0 0

0 1 0 0

)

(

1 1 1 1

0 0 1 1

)

Points and lines at infinity are depicted in red.



Jordan Systems

The set Sn(F ) is a Jordan System of the full matrix algebra R := (Fn×n, +, ·) over

F . Cf. the lecture of A. Blunck or [2].

In terms of our left-homogeneous coordinates (X,Y ) ∈ R2 the POINT set of the

“projective space” of symmetric n × n matrices over F (the set I2n−1,n−1(F )) is the

same as the point set of the projective line P(Sn(F )) over the Jordan system Sn(F ).

There is one difference though:

• In the matrix geometric setting the elements of I2n−1,n−1(F ) are characterised by

the equation

XY T = Y XT.

• In the ring geometric setting the elements of P(Sn(F )) are given in terms of

Bartolone’s parametric representation, namely

P(Sn(F )) = {R(1 + AB,A) | A, B ∈ Sn(F )}.



Part 5

Hermitian Matrices

The fifth part deals with some basic notions and results

from the Geometry of Hermitian Matrices. Some of the

known results depend on technical hypotheses. Here only

a brief outline will be given.

Our exposition follows the book of Z.-X. Wan [22], also tak-

ing into account recent work.



Basic Notions
• Let F be a field which possesses an involution, i. e., an antiautomorphism of

order two.

• The set Fix( ) =: Fix of fixed elements under is closed under addition, but

not necessarily closed under multiplication: If a = a ∈ Fix and b = b ∈ Fix then

ab = ba = ba need not coincide with ab.

• We assume that Fix is contained in the centre Z(F ), whence it is a subfield of

Z(F ).

• Let Hn(F ) ⊂ Fn×n, n ≥ 1, be the set of all Hermitian n × n matrices over F (with

respect to ). So

A ∈ Hn(F ) ⇔ A = AT.

• Hereafter there will always be only one involution at the same time. The term

Hermitian is always understood with respect the chosen involution.

The set Hn(F ) is a subset of the matrix space Fn×n.



Examples

Let H be the non-commutative field of real quaternions. The centre of H is the field
R of real numbers.

• The conjugation

H → H : x + yi + zj + tk 7→ x − yi − zj − tk (x, y, z, t ∈ R)

is an involution of H. It meets the assumption from the previous slide: The set of
fixed elements coincides with the centre of H.

• The mapping
H → H : x + yi + zj + tk 7→ x − yi + zj + tk

is an involution of H. It does not meet the assumption from the previous slide:
The set of fixed elements equals

{x + zj + tk | x, z, t ∈ R},

and is therefore not contained in the centre of H.



Examples (cont.)

Let F be a commutative field and let be an involution. Then is an automorphism
of F . Moreover, Fix is a subfield of F = Z(F ). More precisely, F is a separable
quadratic extension of Fix. We mention two examples.

• F = C and equals the conjugation

C → C : x + yi 7→ x − yi (x, y ∈ R).

Hence Fix = R.

• F = GF(4) and equals the mapping

GF(4) → GF(4) : x 7→ x2.

Hence Fix = GF(2).

This is the only involution of GF(4).



A Single Hermitian Matrix

• Each Hermitian matrix A ∈ Hn(F ) determines a semilinear mapping

fA : Fn → Fn∗ : y 7→ AyT.

This provides the link with Part 1. (The dual space Fn∗ can be turned into a left

vector space by virtue of . Then this mapping gets linear, as in Part 1.)

Moreover, the matrix A defines a Hermitian sesquilinear form

gA : Fn × Fn → F : (x, y) 7→ xAyT.

We shall adopt this interpretation of the matrix A.

• All Hermitian sesquilinear forms Fn × Fn → F arise in this way.



Hermitian Rank One Matrices

Given a column vector a∗ = (a∗
1, a

∗
2, . . . , a

∗
m)T ∈ Fn∗ we obtain the Hermitian

sesquilinear form

Fn × Fn → F : (x, y) 7→ (x · a∗)(y · a∗) = x ·
(

a∗ · (a∗)T
)

· yT.

Its matrix is therefore

a∗ · (a∗)T =













a∗
1a

∗

1 a∗
1a

∗

2 . . . a∗
1a

∗

n

a∗
2a

∗

1 a∗
2a

∗

2 . . . a∗
2a

∗

n

. . . . . . . . . . . . . . . . . . . . . . .

a∗
na∗

1 a∗
na∗

2 . . . a∗
na∗

n













.

This matrix has rank one provided that a∗ 6= 0. All Hermitian matrices with rank ≤ 1

arise in this way.



Vector Space on Hn(F )

The sum of two Hermitian matrices A, B ∈ Fn×n corresponds in a natural way to the

sum of the associated sesquilinear forms gA + gB.

For any λ ∈ Fix the (obviously Hermitian) matrix λA = Aλ may be viewed as the

product of λ and the Hermitan sesquilinear form gA:

(λgA) : (x, y) 7→ λ(xAyT) = x(λA)yT.

Hence Hn(F ) is a (left or right) vector space over the commutative field Fix.

Here Fix ⊂ Z(F ) is essential.



Graph on Hn(F )

We assume n ≥ 2. Hence Hn(F ) contains matrices of rank ≥ 2.

• The notion of adjacency is inherited form Fn×n.

• We consider Hn(F ) as an undirected graph the edges of which are precisely the

(unordered) pairs of adjacent Hermitian matrices.

• Two Hermitian matrices A and B are at the graph-theoretical distance k ≥ 0 if,

and only if,

rk(A − B) = k.

• The diameter (maximal distance) in this graph is n.



Lines
Given a∗ ∈ Fn∗ \ {0} and any matrix R ∈ Hn(F ) the set

{λa∗(a∗)T + R | λ ∈ Fix}

is called a LINE of Hn(F ).

Let LH be the set of all such LINES. Then
(

Hn(F ),LH

)

is a partial linear space,

called the space of Hermitian n × n matrices over Fix.

In this context the elements of Hn(F ) will also be called POINTS.

Two Hermitian matrices A and B are adjacent if, and only if, they are distinct and

COLLINEAR. In this case the unique LINE joining A and B equals

{A,B}∼ = {X ∈ Hn(F ) | (X = A) or (X = B) or (X is adjacent to A and B)}

= {λ(A − B) + B | λ ∈ Fix}.



Example

We recall that the Galois field GF(4) = {0, 1, ω, ω2} admits a single involution, namely

: GF(4) → GF(4) : x 7→ x2.

The space of Hermitian 2× 2 matrices over GF(4) contains the following five Hermi-

tian matrices with rank 1:

(

1 0

0 0

)

,

(

0 0

0 1

)

,

(

1 1

1 1

)

,

(

1 ω

ω2 1

)

,

(

1 ω2

ω 1

)

.

Thus there are five LINES through the zero matrix, each comprising two POINTS.

The space of Hermitian 2 × 2 matrices over GF(4) is a partial affine space, viz. the

affine space on H2(GF(4)) over Fix = GF(2) with 15 − 5 = 10 parallel classes of

lines removed.



Example (cont.)

The space H2(GF(4)) comprises 16 POINTS (matrices) and 40 LINES (of matrices).

The five LINES through the zero matrix are depicted in orange. The associated

graph is known as the Clebsch graph.



Example

We consider the four-dimensional space-time R4 with the indefinite quadratic form

given by the matrix diag(1, 1, 1,−1) and the space H2(C) with respect to conjugation.

The mapping

γ : R
4 → H2(C) : (x1, x2, x3, x4) 7→

(

x4 + x1 x2 + ix3

x2 − ix3 x4 − x1

)

is bijective and

−det((x1, x2, x3, x4)
γ) = x2

1 + x2
2 + x2

3 − x2
4.

The light-like lines of R
4 correspond under γ to the LINES of LH and vice versa.



Example

We consider the six-dimensional space-time R6 with the indefinite quadratic form

given by the matrix diag(1, 1, 1, 1, 1 − 1) and the space H2(H) with respect to conju-

gation. The mapping

γ : R
6 → H2(H) : (x1, x2, . . . , x6) 7→

(

x6 + x1 x2 + ix3 + jx4 + kx5

x2 − ix3 − jx4 − kx5 x6 − x1

)

is bijective and

−det((x1, x2, x3, x4)
γ) = x2

1 + x2
2 + · · · + x2

5 − x2
6.

The light-like lines of R
6 correspond under γ to the LINES of LH and vice versa.



Summary

• The space (Hn(F ),LH) is a connected partial linear space.

• The set Hn(F ) can be considered as a (left or right) vector space (affine space)

over Fix. The LINES of LH comprise some of the parallel classes of lines of this

affine space.



Automorphisms

An automorphism of the space (Hn(F ),LH) is a bijection

ϕ : Hn(F ) → Hn(F ) : X 7→ Xϕ

preserving adjacency in both directions. Consequently, LINES are mapped onto

LINES under ϕ and ϕ−1.

Examples

• Translations: X 7→ X + R, where R ∈ Hn(F ).

• Hermitian congruence transformations: X 7→ PXP T, where P ∈ GLn(F ).

• Field automorphisms: X 7→ Xσ, where σ is an automorphism of F commuting

with and acting on the entries of X .

• Scalings: X 7→ λX , where λ ∈ Fix \{0}.

• Transposition: X 7→ XT = X, but only in certain cases. See next slides.



Transposition

Transposition of any n × n matrix X over a commutative field preserves the rank. In

symbols, we obtain

rk XT = rk X for all X ∈ Fn×n.

Over a commutative field F the mapping X → XT deserves no special mention,

because the involution is an automorphism of F and

XT = X for all X ∈ Hn(F ).



Transposition (cont.)

For any b ∈ F we obtain bb = bb. So bb ∈ Fix ⊂ Z(F ) and, provided that b 6= 0,

bb = (bb)(b b−1) = b(bb)b−1 = (bb)b b−1 = bb.

For b = 0 we clearly have bb = 0 = bb.

Now, given any 2 × 2 Hermitian matrix, say

A =

(

a b

b c

)

,

we notice that a, c ∈ Fix, whence a, b, b, c generate a commutative subfield of F .
Hence we can use determinants and obtain

rk A = 2 ⇔ detA 6= 0 ⇔ detAT 6= 0 ⇔ rk AT = 2,

rk A = 1 ⇔ detA = 0 ∧ A 6= 0 ⇔ detAT = 0 ∧ AT 6= 0 ⇔ rk AT = 1,

rk A = 0 ⇔ A = 0 ⇔ AT = 0 ⇔ rk AT = 0.



Transposition (cont.)

Transposition of Hermitian n × n matrices over a skew field need not preserve the

left row rank for n ≥ 3. For example, over the real quaternions H we have

A :=









1

−i

−j









(

1 i j
)

=









1 i j

−i 1 −k

−j k 1









.

The transpose of this rank one matrix equals

AT = A =









1 −i −j

i 1 k

j −k 1









.

The matrix AT has (left row) rank two, because the first and second row are linearly

independent (from the left).



Fundamental Theorem

Theorem (Hua 1945 et al.) Under certain hypotheses, every bijective mapping

ϕ : Hn(F ) → Hn(F ) : X 7→ Xϕ

preserving adjacency in both directions is of the form

X 7→ λPXσP T + R or, for n = 2 only, X 7→ λPX σP T + R

where P ∈ GLn(F ), R ∈ Hn(F ), σ is an automorphism of F commuting with , and
λ ∈ Fix \{0}.

See L.-P. Huang and Z.-X. Wan [8] for the case n = 2.

The assumptions in Hua’s fundamental theorem can be weakened.

W.-l. Huang [14]; W.-l. Huang, R. Höfer, and Z.-X. Wan [16]; W.-l. Huang and P. Šemrl

[17].



Part 6

Unitary Dual Polar Spaces

We establish an embedding of any space of Hermitian ma-

trices in an appropriate unitary dual polar space.



Unitary Spaces

Let PG(2n− 1, F ) be the projective space over the left vector space F 2n, where F is

a field. Also let be a fixed antiautomorphism of F as before.

The matrix

K :=

(

0 In

−In 0

)

together with defines a non-degenerate skew-Hermitian sesquilinear form

F 2n × F 2n → F : (x, y) 7→ xKy T.

It determines a unitary polarity on the set of subspaces of PG(2n − 1, F )

W 7→ W⊥, where W⊥ := {y ∈ F 2n | xKy T = 0 for all x ∈ X}.

We have dimW + dimW⊥ = 2n − 2. (The vector space dimensions sum up to 2n.)



Subspaces

With respect to ⊥ any subspace W has precisely one of the following properties.

• non-isotropic: W and W⊥ have no point in common.

• isotropic: W and W⊥ have at least one common point.

• totally isotropic: W is contained in W⊥.

• There exist totally isotropic and non-isotropic points.

• There exist lines of all three kinds.

• Each totally isotropic subspace is contained in a maximal one. Any maximal totally

isotropic subspace W satisfies W = W⊥ and has dimension n − 1.



Unitary Polar Spaces

The unitary polar space on (PG(2n − 1, F ),⊥) is defined as follows:

• Its points are the points of PG(2n − 1, F ).

• Its lines are the totally isotropic lines with respect to ⊥.

We shall not be concerned with these polar spaces.



Graph on I2n−1,n−1(F )

Let I2n−1,n−1(F ) be the set of all maximal totally isotropic subspaces of
(PG(2n − 1, F ),⊥). This is a subset of G2n−1,n−1(F ).

• Two totally isotropic (n − 1)-subspaces W1 and W2 are called adjacent if

dimW1 ∩ W2 = n − 2.

• We consider the point set of I2n−1,n−1(F ) as an undirected graph the edges of
which are the (unordered) pairs of adjacent totally isotropic (n − 1)-subspaces. It
is called the dual polar graph on I2n−1,n−1(F ).

• Two totally isotropic (n − 1)-subspaces W1 and W2 are at graph theoretical dis-
tance k ≥ 0 if, and only if,

dimW1 ∩ W2 = n − 1 − k.

• Distance in the dual polar graph = distance in the Grassmann graph.



Unitary Dual Polar Spaces

The unitary dual polar space on (PG(2n − 1, F ),⊥) is defined as follows:

• Its POINT set is I2n−1,n−1(F ), i. e., the set of maximal totally isotropic subspaces

of (PG(2n − 1, F ),⊥).

• Its LINES have the form

{W ∈ I2n−1,n−1(F ) | U ⊂ W ⊂ U⊥},

where U is any (n − 2)-dimensional totally isotropic subspace. So LINES are

proper subsets of pencils.



Unitary Dual . . . (cont.)

The POINTS of this dual polar space are also POINTS of the Grassmann space

(G2n−1,n−1(F ),P). This does not hold, mutatis mutandis, for LINES of this dual polar

space. They are proper subsets of LINES of the ambient Grassmann space.

The dual polar space on (PG(2n − 1, F ),⊥) is a connected partial linear space.

Two totally isotropic (n − 1)-subspaces W1 and W2 are adjacent if, and only if, they

are distinct and COLLINEAR. In this case the unique LINE joining W1 and W2 equals

{W1,W2}
∼.



Example
The dual polar space (PG(3, 4),⊥) has 27 POINTS (the 27 totally isotropic lines)
and 45 LINES (45 subsets of pencils of lines). It equals the generalised quadrangle
GQ(2, 4). We give an illustration of the dual structure. So points / curves below can
be viewed as points / lines of PG(3, 4).

The black points and lines constitute a (self-dual) GQ(2, 2).



Example (cont.)
We stick to the terminology from PG(3, 4) and depict the GQ(2, 2) in grey. The re-
maining 12 = 27−15 totally isotropic lines fall into two classes (red and blue) forming
a double six of lines: Any two distinct red / blue lines are skew, but each red / blue
line meets precisely five of the blue / red lines.

See J. W. P. Hirschfeld [5].



Fundamental Theorem

Theorem (J.-A. Dieudonn é 1954 et al.). Under certain hypotheses, every bijective
mapping

ϕ : I2n−1,n−1(F ) → I2n−1,n−1(F ) : X 7→ Xϕ

preserving adjacency in both directions is of the form

X 7→ {xσP | x ∈ X ⊂ F 2n} or, only if n = 2, X 7→ {xσP | x ∈ X ⊂ F 2n}

where P ∈ GU2n(F ) and σ is an automorphism of F commuting with .

Here GU2n denotes the general unitary group: P ∈ F 2n×2n is in GU2n(F ) if, and

only if

PKP T = µK for some µ ∈ F \ {0}.

See also J. Tits [21].

The assumptions in Dieudonné’s fundamental theorem can be weakened.

W.-l. Huang [14].



An Embedding

We adopt the assumptions from Part 5.

Hn(F ) can be embedded in the Grassmannian G2n−1,n−1(F ) like before:

Hn(F ) → Fn×2n → G2n−1,n−1(F )

X 7→ X |In 7→ left rowspace of X |In

• Matrices X,Y ∈ Hn(F ) are adjacent if, and only if, their images in G2n−1,n−1(F )

are adjacent.

• LINES of matrices are mapped to subsets of LINES of the Grassmann space.



Projective Matrix Spaces
Let W ∈ G2n−1,n−1(F ) be an (n − 1)-subspace with left homogeneous coordinates

(X,Y ) ∈ Fn×n × Fn×n. Then the following assertions are equivalent:

1. W is totally isotropic with respect to ⊥, i. e., W ∈ I2n−1,n−1(F ).

2. (X |Y )

(

0 In

−In 0

)

(X |Y )T = 0.

3. XY T = Y X T.

In particular, for Y = In the last conditions reads X = X T. Hence the embedding

from the previous slide can be considered as a mapping

Hn(F ) → I2n−1,n−1(F ).

The dual polar space on I2n−1,n−1(F ) is often called the projective space of Her-

mitian n × n matrices over F , even though it is not a projective space in the usual

sense.



Points at Infinity

• A totally isotropic subspace with coordinates (X,Y ) is in the image of the embed-

ding

Hn(F ) → I2n−1,n−1(F )

if, and only if, Y is invertible. In this case its only preimage is the matrix Y −1X ∈

Hn(F ).

• All totally isotropic subspaces with coordinates (X,Y ), where Y /∈ GLm(F ), are

called points at infinity of the dual polar space. Clearly, this notion depends on the

chosen embedding.

• There is a distinguished totally isotropic subspace of PG(2n − 1, F ) given by the

left row space of the matrix (In|0).

• An element of I2n−1,n−1(F ) is at infinity, precisely when has at least one common

point with this (n − 1)-dimensional subspace.



Example
The space of Hermitian 2×2 matrices over GF(4) can be embedded in the dual polar

space (PG(3,GF(4)),⊥).

As before, we illustrate the dual structures: The black elements depict the dual of

the Clebsch graph, the 11 POINTS at infinity are illustrated by red curves.



Jordan Systems

The set Hn(F ) is a Jordan System of the full matrix algebra R := (Fn×n, +, ·) over

Z(F ). Cf. the lecture of A. Blunck or [2].

In terms of our left-homogeneous coordinates (X,Y ) ∈ R2 the POINT set of the

“projective space” of Hermitian n × n matrices over F (the set I2n−1,n−1(F )) is the

same as the point set of the projective line P(Hn(F )) over the Jordan system Hn(F ).

There is one difference though:

• In the matrix geometric setting the elements of I2n−1,n−1(F ) are characterised by

the equation

XY T = Y X T.

• In the ring geometric setting the elements of P(Hn(F )) are given in terms of

Bartolone’s parametric representation, namely

P(Hn(F )) = {R(1 + AB,A) | A, B ∈ Hn(F )}.



Part 7

Final Remarks and References

There are several topics which would deserve our attention

and a detailed discussion.



Final Remarks

• Spaces of alternating matrices: Adjacency has to be defined differently, since

alternating matrices with rank one do not exist [22].

• Orthogonal dual polar spaces: They arise as projective spaces of alternating ma-

trices [22].

• Spaces of block triangular [10], skew-Hermitian matrices [8], and Hermitian ma-

trices with being more general [7], [9].

• Spaces of matrices over a ring: See [6].

• Polar spaces and dual polar spaces in general [3].

• Analogues of matrix spaces for infinite dimension. Here the approach without

coordinates becomes essential.

• Near polygons and their relationship with dual polar spaces.
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