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(michel.planat@femto-st.fr)

Quantum Information and Graph Theory: emerging
connections, Waterloo (PI), April 28- May 2 (2008)

Michel Planat (joint work with Philippe Jorrand) On group theory, quantum gates and quantum coherence



Outline
1. Geometry of the two-qubit system , the generalized quadrangle GQ(2) and its basic factorizations

2. Group theory for quantum gates...

Introduction

� 1. Geometry of commutation/anti-commutation relations
of (generalized) Pauli operators.

� 2. Finite group extensions: a natural language for quantum
computing: error gates from the Pauli group P, and
stabilizing gates within an extension group C.

� Single qubit C1 and ... magic states.

� Two-qubit C2 and ... alt. group A6,
the non-coherent group U6 (order 5760), Mathieu group M22,
alt. group A5, the coherent group M20 (order 960)...

� Three-qubit coherence, A5 and ...SU(4, 2).
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On the Pauli graphs on N-qudits1

1M. Planat and M. Saniga, Quant Inf Comp 8, 127-146 (2008)
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Glossary on finite geometries: 1

� FINITE GEOMETRY: a space S = {P ,L} of points P and
lines L such that certain conditions, or axioms, are satisfied.

� A near linear space/linear space: a space such that any line
has at least two points and two points are at most/exactly on
one line.

� A projective plane: a linear space in which any two lines
meet and there exists a set of four points no three of which lie
on a line. The projective plane axioms are dual. The smallest
one is PG (2, 2): the Fano plane with 7 points and 7 lines.

� A projective space: a linear space such that any
two-dimensional subspace of it is projective plane. The
smallest one is three dimensional and binary: PG (3, 2).
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Glossary on finite geometries: 2

� A generalized quadrangle: a near linear space such that given a
line L and a point P not on the line, there is exactly one line K
through P that intersects L (in some point Q). A finite generalized
quadrangle GQ is said to be of order (s, t) if every line contains
s + 1 points and every point is in exactly t + 1 lines2.

� A geometric hyperplane H : a set of points such that every line of
the geometry either contains exactly one point of H , or is
completely contained in H .

� A polar space S = {P , L}: a near-linear space such that for every
point P not on a line L, the number of points of L joined to P by a
line equals either one (as for a generalized quadrangle) or to the
total number of points of the line.

2
Properties: #P = (s + 1)(st + 1), #L = (t + 1)(st + 1), the incidence graph is strongly regular and the

eigenvalues of the adjacency matrix are k = s(t + 1), r = s − 1, l = t − 1; moreover r has multiplicity
f = st(s + 1)(t + 1)/(s + t).
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Geometry of commuting/anti-commuting relations of the two-qubit system

� Fifteen tensor products σi ⊗ σj of Pauli matrices σi = (I2, σx , σy , σz), where

I2 =

�
1 0
0 1

�
, σx =

�
0 1
1 0

�
, σz =

�
1 0
0 −1

�
and σy = iσxσz .

� Labels: 1 = I2 ⊗ σx , 2 = I2 ⊗ σy , 3 = I2 ⊗ σz , a = σx ⊗ I2, 4 = σx ⊗ σx . . . ,
b = σy ⊗ I2,. . . , c = σz ⊗ I2,. . .
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Embedding of the generalized quadrangle GQ(2) (and thus of the Pauli graph
G2 into the projective space PG(3, 2)).
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Maximal commuting sets

{1, a, 4}, {2, a, 5}, {3, a, 6}, {1, b, 7}, {2, b, 8}, {3, b, 9}, {1, c, 10}, {2, c, 11}, {3, c, 12},

{4, 8, 12}, {5, 7, 12}, {6, 7, 11}, {4, 9, 11}, {5, 9, 10}, {6, 8, 10}
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� GQ(2) as the unique underlying geometry of the two-qubit system. The Pauli operators correspond to the
points and the base/maximally commuting subsets of them to the lines of the quadrangle. .
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Miscellaneous properties of the generalized quadrangle GQ(2)

� two-qubit geometry GQ(2), -graph G2, -group P2

� GQ(2) as the two-qubit Pauli graph G2

� Aut(GQ(2)) = S6

� G2 = L̂(K6) generalizes Petersen graph PG = L̂(K5)

� There exists 6 maximal sets of 5 disjoint lines (MUBs)

� Out(S6) = Z2 ×Z2

� Later, I define Z2 � A6 as Aut(P2)
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Basic partitionings: FP+CB
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� Partitioning of G2 into a pencil of lines in the Fano plane (FP) and
a cube (CB).
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Basic partitionings: BP+MS

(BP) (MS)
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� Partitioning of G2 into an unentangled bipartite graph (BP) and a

fully entangled Mermin square (MS). Operators on all six lines carry

a base of entangled states. The graph is polarized.
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Basic partitionings: I+PG
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� The partitioning of G2 into a maximum independent set (I ) and the

Petersen graph (PG), aka its minimum vertex cover. ).
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Geometric hyperplanes of GQ(2)

A geometric hyperplane H : a set of points such that every line of the
geometry either contains exactly one point of H , or is completely
contained in H .

� A perp-set (Hcl (X )), i. e., a set of points collinear with a given
point X , the point itself inclusive (there are 15 such hyperplanes).
It corresponds to the pencil of lines in the Fano plane.

� A grid (Hgr ) of nine points on six lines (there are 10 such
hyperplanes). It is a Mermin square.

� An ovoid (Hov ), i. e., a set of (five) points that has exactly one
point in common with every line (there are six such hyperplanes).
An ovoid corresponds to a maximum independent set.

Michel Planat (joint work with Philippe Jorrand) On group theory, quantum gates and quantum coherence



Outline
1. Geometry of the two-qubit system , the generalized quadrangle GQ(2) and its basic factorizations

2. Group theory for quantum gates...

Group theory, quantum gates and
quantum coherence3

3M. Planat and P. Jorrand, J Phys A:Math Theor 41 (2008)
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Outline of group commutators and group extensions: 1

� A subgroup N of a group G is called a normal subgroup if it
is invariant under conjugation: that is, for each n in N and
each g in G , the conjugate element gng−1 still belongs to N.

� e.g. 1: the center Z (G ) of a group of G . The group
G̃ = G/Z (G ) is called the central quotient of G .

� e.g. 2: the subgroup G ′ of commutators (generated by all
the commutators [g , h] = ghg−1h−1 of elements of G ). The

quotient group Hab = G/G ′ is an abelian group called the
abelianization of G and corresponds to its first homology
group. The set K (G ) of all commutators of a group G may
depart from G ′.
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Outline of group commutators and group extensions: 2

� e.g. 3: group extensions. Let P and C be two groups such
that P is normal subgroup of C. The group C is an extension
of P by H if there exists a short exact sequence of groups

1 → P f1→ C f2→ H → 1,

i.e.
(i) P ∼= a normal subgroup N of C,
(ii) H ∼= C/N.
In an exact sequence Im(f1) = Ker(f2), then the map f1 is
injective and f2 is surjective.
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Outline of group commutators and group extensions: 3

� Given any groups P and H the direct product of P and H is
an extension of P by H,

� The semidirect product P � H of P and H:
The group C is an extension of P by H and
(i) H is isomorphic to a subgroup of C,
(ii) C=PH and
(iii) P ∩ H = 〈1〉.
One says that the short exact sequence splits.

� The wreath product M � H of a group M with a permutation
group H acting on n points is the semidirect product of the
normal subgroup Mn with the group H which acts on Mn by
permuting its components.
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Outline of group commutators and group extensions: 4

� Icosahedral symmetry and the “Mathieu group ” M20:
Let G = Z2 � A5, then G is a perfect group with order 25.60.
One has G ′ �= K (G ). Let H = Z 5

2 � A5, one can think of A5

having a wreath action on Z 5
2 . The group G ′ = H̃ = M20 is

the smallest perfect group having its commutator subgroup
distinct from the set of the commutators 4.

� M20 also corresponds to the derived subgroup W ′ of the Weyl
group (also called hyperoctahedral group) W = Z2 � S5 for the
Lie algebra of type B5.

4On commutators in groups. L C Kappe and R F Morse. available on line at
http://faculty.evansville.edu/rm43/publications/commutatorsurvey.pdf
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Group of automorphisms

� Given the group operation ∗ of a group G , a group
endomorphism is a function φ from G to itself such that
φ(g1 ∗ g2) = φ(g1) ∗ φ(g2), for all g1, g2 ∈ G . If it is bijective
it is called an automorphism.

� An automorphism of G that is induced by conjugation of
some g ∈ G is called inner. Otherwise it is called an outer
automorphism. Under composition the set of all
automorphisms defines a group denoted Aut(G ). The inner
automorphisms form a normal subgroup Inn(G ) of Aut(G ),
that is isomorphic to the cental quotient of G . The quotient
Out(G ) = Aut(G )/Inn(G ) is called the outer automorphism
group.
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Quantum computing: a few quantum gates

� The Hadamard gate: H = 1/
√

2

�
1 1
1 −1

�

and the phase shift gate P =

�
1 0
0 i

�
.

superpositions: H |0〉 = 1/
√

2(|0〉 + |1〉), H |1〉 = 1/
√

2(|0〉 − |1〉).

� The Controlled not gate CNOT =

�
���

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

�
���.

entanglement: CNOT (α |0〉 + β) |1〉) |0〉 = α |00〉 + β |11〉.

� The Toffoli gate TOF =

�
����������

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

�
����������

.
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A quantum computing challenge

� Correcting the errors in quantum computing:
quantum codes or methods immune of decoherence.

� error group: the Pauli group P
|ψ〉 −→error g |ψ〉 −→unitary evolution Ug |ψ〉 = UgU†U |ψ〉.
Stabilizing the error g ∈ P requires UgU† ∈ P.

� Error free operators are in the Clifford group C
e.g. H, P , CNOT .

� Since U† = U−1, P is a normal subgroup of C.

Michel Planat (joint work with Philippe Jorrand) On group theory, quantum gates and quantum coherence
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Generating the Clifford groups

� For a system of n qubits one denotes the Pauli group as Pn

and the Clifford group as Cn.

� C1 = 〈H,P〉, C2 = 〈C1 ⊗ C1,CZ 〉 with CZ = Diag(1, 1, 1,−1).
Any gate in Cn is a circuit of gates from C1 and C2.

5.

� Clifford group Cn on n-qubits has order
|Cn| = 2n2+2n+3

∏n
j=1 4j − 1 .

� e.g. a MAGMA program //Two-qubit Clifford group
K〈w〉:=CyclotomicField(8); r2:=w+ComplexConjugate(w);
H:=Matrix(K,2,2,[1/r2, 1/r2, 1/r2, w4/r2]);
P:=Matrix(K,2,2,[1, 0, 0, w2]); CZ:=DiagonalMatrix([1, 1, 1, w4]);
H2:=KroneckerProduct(H,H); HP:=KroneckerProduct(H,P);
C2:=MatrixGroup〈4, K |H2, HP, CZ 〉; Order(C2);

192, 92 160, 743 178 240

5Generalized Clifford groups and simulation of associated quantum circuits.
S Clark, R Jozsa and N Linden. Quant Inf Comp 8, 106–26 (2008).
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The Clifford group on a single qubit

� One-qubit Clifford group C1 = 〈H ,P〉: |C1| = 192, Z (C1) ∼= Z8,

C′
1
∼= SL(2, 3), C̃1 = S4 and Cab

1 = Z4 ×Z2.

� A split extension attached to the commutator subgroup C′
1

1 → SL(2, 3)→ C1 → Z2 ×Z3 → 1.

� ... attached to the magic group6 〈T ,H〉, where T = exp(iπ/4)PH

1 → GL(2, 3)→ C1 → Z4 → 1.

� ... attached to the Pauli group

1 → P1→ C1 → D12 → 1,

in which D12 = Z2 × S3 is the symmetry group of a regular hexagon.

6Universal quantum computation with ideal Clifford gates and noisy ancillas.
S Bravyi and A Kitaev. PRA71, 1-14 (2005).
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The Clifford group on two qubits: 1

� Two-qubit Pauli group
P2 = 〈σx ⊗ σx , σz ⊗ σz , σx ⊗ σy , σy ⊗ σz , σz ⊗ σx〉, order 64,
Z (P2) = {±1,±i}.
Two-qubit Clifford group C2 = 〈H ⊗ H ,H ⊗ P ,CZ 〉, order 92160.

� Z (C2) = Z8, C̃2 such that

1 → U6 → C̃2 → Z2 → 1.

� It turns out that the group C̃2 only contains two normal subgroups
Z×4

2 and C̃′
2 = U6 = Z×4

2 � A6. The group U6, of order 5760, is a
perfect group. Out(U6) = Out(A6) = Z2 ×Z2.

� Aut(P2) = Z2 � A6, U6 = Aut(P2)
′.

C2/P2 = Z2 × S6.
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The Clifford group on two qubits: 2

� U6 is a maximal subgroup of several sporadic groups. The
smallest one is M22. It appears in relation to a subgeometry of
M22 known as an hexad.

� A Steiner system S(a, b, c) with parameters a, b, c , is a
c-element set together with a set of b-element subsets of S
(called blocks) with the property that each a-element subset
of S is contained in exactly one block.
M22 stabilizes the Steiner system S(3, 6, 22) comprising 22
points and 6 blocks, each set of 3 points being contained
exactly in one block.
Any block in S(3, 6, 22) is a Mathieu hexad, stabilized by
the general alternating group U6.
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Two-qubit coherence and the anyons: 1

� Topological quantum computing based on anyons has been
proposed as way of encoding quantum bits in non local observables
that are immune of decoherence 7. The basic idea is to use pairs∣∣v , v−1

〉
of “magnetic fluxes” playing the roles of the qubits and

permuting them within some large enough non abelian finite group
G such as A5. The “magnetic flux” carried by the (anyonic)
quantum particle is labeled by an element of G , and “electric
charges” are labeled by irreducible representation of G .

� The exchange within G modifies the quantum numbers of the
fluxons according to the fundamental logical operation

|v1, v2〉 →
∣∣v2, v

−1
2 v1v2

〉
,

a form of Aharonov-Bohm interactions (in a non abelian group).

7Fault tolerant quantum computation. J Preskill. in Introduction to
Quantum Computation and Information. ed H K Lo, T Spiller, S Popescu
(Singapore, World Scientific, 1998). Preprint quant-ph/9712048.
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Two-qubit coherence and the anyons: 2

� This process can be shown to produce universal quantum
computation. It is intimely related to topological entanglement, the
braid group and unitary solutions of the Yang-Baxter equation 8

(R ⊗ I2)(I2 ⊗ R)(R ⊗ I2) = (I2 ⊗ R)(R ⊗ I2)(I2 ⊗ R),

in which the operator R : V ⊗ V → V ⊗ V acts on the tensor
product of the bidimensional vector space V . One elegant unitary
solution of the Yang-Baxter equation is a universal quantum gate
known as the Bell basis change matrix

R = 1/
√

2

⎛
⎜⎜⎝

1 0 0 1
0 1 −1 0
0 1 1 0
−1 0 0 1

⎞
⎟⎟⎠ .

8Braiding operators are universal quantum gates. L H Kauffman and S J
Lomonaco. New J Phys 6, 134 (2004).
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Two-qubit coherence and the anyons: 3

� Two-qubit topological quantum computing and the Bell
subgroup of the Clifford group, of order 15360

B2 = 〈H ⊗ H ,H ⊗ P ,R〉 . (1)

� Z (B2) = Z8, B′
2 = Z2 � A5, and

1 → Z2 � A5 → B2 → Z2 → 1.

� B̃2 only contains two normal subgroups Z×4
2 and

M20 = Z×4
2 � A5.

Relation between Bell and Pauli groups

B2/P2 = Z2 × S5

S5 is the the stabilizer of Petersen graph.
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Quantum coherence from mutually unbiased bases

G g2 g3 g4 g5 g6

Aut(G ) D8 Z2 × S4 Z2 � A5 Z×2
2 � A5 Z×3

2 � A5

|Aut(G )| 8 48 1920 61440 1966080

� Group structure of the maximal independent set generating a
complete set of MUBs: gi = 〈m1,m2 · · ·mi 〉.

� The wreath product Z2 � S5 corresponds to the first known
example of a non-additive quantum code.

� A5 is the symmetry group of the icosahedron: S Benjamin,
Towards a fullerene-based quantum computer, J Phys:Cond Matter
18, S867-83 (2006).
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Three-qubit quantum coherence

� Two-qubit system
C̃2 = Z×4

2 � S6, S6 = Sp(4, 2) (order 720),
B̃2 = Z×4

2 � S5

� Tree-qubit system

Let B3 = 〈H ⊗ H ⊗ P ,H ⊗ R ,R ⊗ H〉.
C̃3 = Z×6

2 � G1, G1 := Sp(6, 2) (order 1 451 520),
B̃3 = Z×6

2 � G2,
with G2 = SU(4, 2) ∼= PSp(4, 3) (order 25920).

� Geometry: G1 (resp G2) are the derived subgroups of the
Weyl groups attached to exceptional Lie algebra of type E7

(resp E6).
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Conclusion

Merging of several conceps?
� Quantum gates and the Geometry of classical groups

* Tits systems (BN pairs) (see D. E. Taylor, 1992)

� Topological quantum computing

� Non-additive quantum codes

� Ring geometry [collaboration with M. Saniga (SK) and H.
Havlicek(Austria)]
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